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Abstract. Spectral methods for clustering are now standard, and there
are many toy examples in which they can be seen to yield more sensible
solutions than classical schemes like vanilla k-means. A more rigorous
analysis of these methods has proved elusive, however, and has so far
consisted mostly of probabilistic analyses for random inputs with planted
clusterings. Such an analysis, typically calls for proving tight asymptotic
bounds on the spectrum of the graph in question. In this paper, we study
a considerably broad data model first introduced by Feige and Kilian
[FK01]: the planted partition graph model. We prove tight bounds on
the Laplacian and Adjacency spectrum of those graphs which we think
will be crucial to the design and analysis of an exact algorithm for planted
partition as well as semi-random graph k-clustering.

1 Introduction

Clustering is a basic primitive of statistics and machine learning. In a typical
formulation, the input consists of a data set x1, . . . , xn ∈ Rd, along with an
integer k, and the goal is to partition the data into k groups. The most popular
algorithms for doing this include: k-means, which attempts to find k centers such
that the average squared distance from a point to its nearest center is minimized;
EM, which fits a mixture of k Gaussians to the data; and spectral clustering,
the subject of this paper.

There are several heuristics that fall in the category of spectral clustering.
Here is a typical one:

– Create an undirected graph with n nodes, one per data point. Put an edge
between two nodes if the corresponding point are close together according
to some criterion.

– Let A denote the n × n adjacency matrix of this graph, and let D be the
diagonal matrix of vertex degrees; that is, D = diag(d1, . . . , dn), where di
is the degree of node i. Define the Laplacian of the graph to be the n × n
matrix L = D −A.

– Find the bottom k eigenvectors of L, say u1, . . . , uk ∈ Rn. Associate each
data point with one row in the n× k matrix whose columns are the ui.

– Cluster these rows using k-means.



An excellent survey of such algorithms is that of von Luxburg [vL07]. Part of the
reason for their popularity is that, with suitable initial graph construction, they
can handle cases, such as concentric clusters, that are difficult for competitor
methods.

The analysis of spectral clustering has focused primarily on random graphs
with planted partitions. The graph G is assumed to be generated as follows:

– Each index 1 ≤ i ≤ n is associated with a particular cluster c(i) ∈ {1, . . . , k}.
– The adjacency matrix is constructed by setting its diagonal elements to zero,

and sampling each off-diagonal entry (i, j), i < j, independently as follows:
• If c(i) = c(j) then A(i, j) is 1 with probability p (and otherwise 0).
• If c(i) 6= c(j), then A(i, j) is 1 with probability q.

Here p > q, and the final matrix is made symmetric by coping elements
above the diagonal to their counterparts below.

When k = 2 and each cluster consists of exactly half the points, this is the planted
bisection model. The pioneering work of Boppana [B87] exhibited a convex op-
timization algorithm, with embedded spectral procedure, that is guaranteed to
recover the bisection with high probability when p − q >

√
(p log n)/n. Subse-

quent work of McSherry [M01] showed a somewhat simpler spectral method that
can achieve roughly the same result with multiple clusters k ≥ 2. In the machine
learning literature, [NJW01] proposed essentially the algorithm outlined above,
and gave a basic probabilistic analysis that was later refined and improved by
[BXKS11]. The latter uses matrices with a different noise model, and thus the
results are not immediately comparable.

The success of spectral methods on random graphs is certainly evidence of
their efficacy. And in fact, similar random graph models with planted solutions
have been used to analyze heuristics for many other NP-hard problems, such as
maximum clique and independent set. This is a mathematically pleasing form
of analysis, but the graph models are extremely specific and unlikely to be good
reflections of real data. This caveat has led several authors to investigate models
with less randomness. Blum and Spencer [BS95] considered a situation where
the graph is chosen adversarially, but then each edge is flipped with a certain
probability. Feige and Kilian [FK01] introduced the semirandom graph model:
for bisection, this would start with a planted instance as above, but then an
adversary would be allowed to add edges within either half of the bisection, or
to remove edges between the two halves. These changes seem to merely enhance
the planted bisection, but the adversary can use them to gain control of the
principal eigenvectors and thus derail naive spectral solutions. In their paper,
Feige and Kilian show how to recover the planted bisection in a semi-random
graph as above exactly, with high probability by exhibiting an algorithm which
uses a combination of semi-definite programming and spectral techniques to
recover the bisection. Interestingly, one of the most crucial ingredients of their
algorithm is proving tight bounds on the spectrum of the underlying planted
partition random instance. They, in fact, show that understanding the spectrum
of the planted partition instance is sufficient and thus, there is no need to analyze
the spectrum of the graph after the adversary performed her action.



Our work. In this paper, we consider a planted partition graph model as above,
for any parameter k which we describe again for simplicity. There are k clusters
c(i) for i = 1, · · · , k of size n/k each. For each two vertices u, v in the same
cluster, we add an edge between them with probability p. For each two vertices
u, v in different clusters, we add an edge between them with probability q < p.
We denote such a (random) graph with Gp,q(n, k).

We analyze the spectrum of the adjacency and Laplacian matrices ofGp,q(n, k)
and give tight asymptotic lower and upper bounds respectively. Our main con-
tribution is the following theorem:

Theorem 1. Let G be a graph satisfying model Gp,q(n, k) (explained in detail
later), c be a sufficiently large constant, a > 0 an arbitrary constant and n
sufficiently large. Let, AG be the adjacency matrix with λ1(AG) ≥ λ2(AG) ≥
· · · ≥ λn(AG) its eigenvalues, LG the normalized Laplacian matrix with 0 =
λ1(LG) ≤ λ2(LG) ≤ · · · ≤ λn(LG) its eigenvalues, and δ, ∆ the minimum and
maximum degrees of G. Finally, let s be the index of the smallest non-negative
eigenvalue of AG. Then:

1. For all but the first and last k eigenvalues of AG we have:

max [|λk(AG)|, |λn−k(AG)|] ≤ c
[√

k

√
n log

n

k
+
√
n log n

]
with probability at least 1 − n−a over the choice of AG. Which immediately
implies:

λk(LG) > 1− 1

δ
c

[√
k

√
n log

n

k
+
√
n log n

]
with probability at least 1− n−a over the choice of LG.

2. And for all the eigenvalues including the first and last k, we also have a
different (not as tight) bound:

For each 1 ≤ u ≤ s : λu(LG) > 1− 1

δ
max

[
c
√
qn log n, c

√
(1− q)n log n

]

For each s+1 ≤ v ≤ n : λv(LG) > 1+
1

∆
max

[
c
√
qn log n, c

√
(1− q)n log n

]
with probability at least 1− n−a over the choice of LG.

To our knowledge, this is the first result on spectrum of Gp,q(n, k), for k > 2.
Similarly to [FK01], we believe that understanding the spectrum of the planted
partition model is enough in order to design algorithms that will exactly recover,
with high probability, the k clusters in a semi-random graph model, where the
adversary can remove edges between clusters and add edges within each cluster
as she wishes.



Other related work. We note that in Thm. 1 above, we have obtained much
tighter bounds for the adjacency matrix and Laplacian eigenvalues other than
the first (and last) k ones. The obtained bounds reflect (informally) the fact
that, for p >> q, each of the k clusters of the planted partition model is a very
good expander compared to the expansion of cuts that have endpoints at different
clusters and the quality of expansion only starts to reveal itself in the eigenvalues
that are higher (in order) than λk. This connection between the so-called small
set expansion property of our graphs and their spectrum has been known for
a long time and especially lately has been a subject of increasing interest. For
instance, simple fact regarding higher eigenvalues is that for a graph G, if (and
only if) the k-th Laplacian eigenvalue λk = 0 then G has at least k connected
components.

Moreover, several works ([LOT12, LRTV11, LRTV12, OW12]) have con-
tributed in understanding the complete spectrum of graphs and the direct con-
nection between higher eigenvalues and expansion of small sets . Specifically, a
higher order Cheeger inequality was recently obtained by Louis, Raghavendra,
Tetali, and Vempala ([LRTV11, LRTV12]) and by Lee, Oveis Gharan, and Tre-
visan ([LOT12]). Specifically, the latter two results show that for any k, one can
partition the vertex set V into Ω(k) disjoint nonempty sets Si, each of which
has conductance Φ[Si] ≤ O(

√
λk log k).

Paper organization. The rest of the paper is organized as follows. In Sec-
tion 2, we give some background on graph spectra and previously known results
that we use. We devote Section 3 to proving our bounds on the Adjacency and
Laplacian eigenvalues of the planted partition graphs (Thm. 1 above). We give
some conclusions and open questions in Section 4.

2 Preliminaries

We begin this section with some necessary preliminaries on eigenvalues along
with several results that we will be using later and we continue with a detailed
presentation of our graph model.

2.1 Basics

For a graph G, the adjacency matrix A = AG is defined as:

AG =

{
1 if (u, v) ∈ E
0 if (u, v) /∈ E

If the graph has n vertices, AG has n real eigenvalues λ1(AG) ≥ λ2(AG) ≥
· · · ≥ λn(AG). The eigenvectors that correspond to these eigenvalues form an
orthonormal basis of Rn. We note that if the graph is d-regular then the largest
eigenvalue is equal to d and the corresponding eigenvector is the all-one’s vector.

We can use the Courant-Fisher Theorem to characterize the spectrum of A.
The largest eigenvalue satisfies

λ1(AG) = max
x∈Rn

xTAx

xTx



If we denote the first eigenvector by x1 then

λ2(AG) = max
x∈Rn,x⊥x1

xTAx

xTx

Similar definitions hold for the eigenvalues λi, i ≥ 3.
We will also need to define the Laplacian of a graph. For a graph G, let D

be the diagonal matrix with diagonal entry D(u, u) = du equal to the degree of
node u. The Laplacian of G is defined as follows:

LG = D −AG

If the graph has n vertices, LG has n real eigenvalues 0 = λ1(LG) ≤ λ2(LG) ≤
· · · ≤ λn(LG). We can always choose n eigenvectors γ1, · · · , γn such that γi has
eigenvalue λi which form an orthonormal basis of Rn. We note that 0 is always an
eigenvalue with corresponding unit length eigenvector the (normalized) all-one’s
vector. Moreover, if and only if the graph has k connected components, then LG
has k eigenvalues equal to zero. We also define the Normalized Laplacian to be
the matrix:

LG = D−1/2LGD
−1/2

2.2 Some Results we Will Use

We next present a few lemmas and theorems we will need in our proof.
Convention: We will be using λ(A) to denote eigenvalues of adjacency matrices
and λ(L) to denote eigenvalues of Laplacian matrices.

Lemma 1. [CDHLPS] Let G be a connected graph, let H be a proper connected
subgraph of G and let LG and LH be their Laplacian matrices. Then λi(LH) <
λi(LG),∀i ∈ [1, n].

Theorem 2. [FK01] We denote the eigenvalues of a matrix by ν1 ≥ ν2 ≥ ... ≥
νn. Let A,B be two symmetric matrices of order n. Then νn(A) + νi(B) ≤
νi(A+B) ≤ ν1(A) + νi(B).

Theorem 3. [FK01] Let c be a sufficiently large constant, a > 0 an arbi-
trary constant and n sufficiently large. Let, also, B be the adjacency matrix
of a random graph with n vertices in which each edge has probability p, where
1/n ≤ p < (n − 1)/n. Then with probability at least 1 − n−a over the choice of
B, we have that:

max [|λ2(B)|, |λn(B)|] ≤ max
[
c
√
pn log n, c

√
(1− p)n log n

]
Let C be the adjacency matrix of a random bipartite graph on n/2 + n/2

vertices in which each edge connecting the two parts has probability p. Then with
probability at least 1− n−a over the choice of C, we have that:

max [|λ2(C)|, |λn−1(C)|] ≤ max
[
c
√
pn log n, c

√
(1− p)n log n

]
as well.



Theorem 4. [CAV01] Let G be a graph of size n with no isolated vertices, and
δ and ∆ the minimum and maximum degrees (respectively) of G. Let s be such
that

λ1(A) ≥ ... ≥ λs(A) ≥ 0 > λs+1(A) ≥ ... ≥ λn(A).

Then the following statements hold.

For each 1 ≤ k ≤ s : 1− λk(A)

δ
≤ λk(L) ≤ 1− λk(A)

∆

For each s+ 1 ≤ k ≤ n : 1− λk(A)

∆
≤ λk(L) ≤ 1− λk(A)

δ

2.3 Our Model Gp,q(n, k)

We next formalize the k-planted partition graph model that was mentioned in
the introduction.

We will say that a random graph G on n vertices satisfies our model Gp,q(n, k)

where p > q > logn
n , if it is defined as follows:

– Partition the vertices into k groups of n
k vertices each, k ≥ 2.

– Add an edge for every two vertices in the same cluster independently at
random with probability p.

– Add an edge for every two vertices in different clusters independently at
random with probability q.

3 Eigenvalue Bounds

We will now show that the Laplacian eigenvalues of a graph G satisfying this
model Gp,q(n, k), are bounded with high probability.

3.1 k-partite Random Graphs

In this section, we improve Thm. 3 of Feige and Kilian by stating a more generic
result. We prove that the bounds described hold not only for random and bipar-
tite random graphs, but indeed for any k-partite random graph. In particular:

Theorem 5. Let c be a sufficiently large constant, a > 0 an arbitrary constant
and n sufficiently large. Let, also, C be the adjacency matrix of a k-partite ran-
dom graph with n/k vertices in each cluster and where each edge connecting
any two clusters has probability p, where 1/n ≤ p < (n − 1)/n. Then with high
probability (at least 1− n−a) over the choice of C, we have that:

max [|λk(C)|, |λn−k(C)|] ≤ max
[
c
√
pn log n, c

√
(1− p)n log n

]
.



Proof. Consider a matrix C as per the theorem and assume p ≤ 1/2 and let
Ci, i = 1..k denote the k different clusters. Moreover, let D be a matrix with
entries dij = 0 whenever i, j ∈ Cl, l = 1..k and 1 otherwise.

D has k non zero eigenvalues: (k − 1) of them equal to −n/k and one equal
to n/k · (k − 1).

Let A = C − pD.

Claim. It holds that λk(C) ≤ λ1(A) and λn−k(C) ≥ λn(A).

Proof ( Claim 1). Recall that A = C − pD ⇒ C = A + pD and that A and C
are both symmetric and of order n. Therefore by Thm. 2:

λi(C) ≤ λ1(A) + λi(pD)
i=k
=⇒ λk(C) ≤ λ1(A) + λk(pD)

λk(pD)=0
=⇒

λk(C) ≤ λ1(A)

λn(A) + λi(pD) ≤ λi(C)
i=n−k
=⇒ λn(A) + λn−k(pD) ≤ λn−k(C)

λn−k(pD)=0
=⇒

λn(A) ≤ λn−k(C)

Let m be an even integer, we will later choose m = Θ(log n), will prove that
the upper bound on E[Tr(Am)] applies as before, and hence the same technique
used in the proof of Thm. 3.

The matrix A is a random matrix.

Claim. Each entry of A has expectation 0 and variance p(1− p) (except for the
entries in the main diagonal which are all 0).

Proof ( Claim 2). Let us begin by calculating the expectation of the entries of A.
In order to do that, we will look into two cases. The first will be for entries ij such
that both i, j are in the same cluster Ci, i = 1..k and the second for entries ij such
that i, j are not in the same cluster Ci, i = 1..k. Then E[Aij ] = E[Cij ]−E[pDij ]
and we have the following analysis.

– If i, j ∈ Ci then E[Cij ] = 0 since all the entries are 0 as there are no edges
between any two vertices inside a cluster and E[pDij ] = p · 0 = 0 since again
all entries are 0 by the design of D. So, E[Aij ] = 0− 0 = 0.

– If i, j /∈ Ci then E[Cij ] = p since all entries are either 0 or 1 with probability
p and E[pDij ] = p · 1 = p because all entries of D are 1 and linearity of
expectation. So, E[Aij ] = p− p = 0.

Hence, E[Aij ] = 0 for all i, j = 1..n and therefore E[A] = 0.

For the calculation of the variance of the entries of A, we will again investigate
the same two cases. We know that V ar(Aij) = V ar(Cij)−V ar(pDij) and again
our cases analysis is:



– If i, j ∈ Ci then V ar(Cij) = 0 since all the entries are 0 and V ar(pDij) = p2 ·
V ar(Dij) = p2 ·0 = 0 since again all entries are 0. So, V ar(Aij) = 0−0 = 0.

– If i, j /∈ Ci then V ar(Cij) = E[C2
ij ]− (E[Cij ])

2 = p− p2 = p(1− p) since all

entries are either 0 or 1 with probability p and V ar(pDij) = p2 ·V ar(Dij) =
p2 ·0 = 0 because all entries of D are 1. So, V ar(Aij) = p(1−p)−0 = p(1−p).

Hence, V ar(Aij) =

{
0 for i, j ∈ Ci

p(1− p) for i, j /∈ Ci
, i, j = i..n.

Let λ(A) = max[|λk(A)|, |λn−k(A)|]. As A is random, we shall compute
the expectation E[λ] over the choice of random A. Then E[λ]m ≤ E[λm] ≤
E[Tr(Am)].

From this point on the proof continues along the lines of Feige and Kilian
and is omitted. ut

3.2 All Eigenvalues But the First and Last k

Theorem 6. Let G be a graph satisfying model Gp,q(n, k), let c be a sufficiently
large constant, a > 0 an arbitrary constant and n sufficiently large. Let, AG be the
adjacency matrix of G with λ1(AG) ≥ λ2(AG) ≥ · · · ≥ λn(AG) its eigenvalues.
Then:

max [|λk(AG)|, |λn−k(AG)|]

≤ c
[√

k

√
n log

n

k
max

[√
p,
√

1− p
]

+
√
n log nmax

[√
q,
√

1− q
]]

with probability at least 1− n−a over the choice of AG.

Proof. Let Gc be the edge complement graph of G and let the adjacency matrix
of this graph be denoted Ac and the normalized Laplacian as Lc.

In order to choose at random a graph Gc with the right distribution, we do
the following process:

Remark 1. For simplicity, from now on, we will be identifying graphs with their
adjacency matrices. Moreover, every adjacency matrix of a graph is assumed to
be onto the total of n vertices, i.e., every matrix is increased to n× n order by
filling the extra rows and columns with zeros.

– Choose a random k-partite graph Qck with parts P1, P2, ..., Pk, over n ver-
tices. For each pair of vertices of different parts, there exists an edge with
probability (1− q).

– Choose k random graphs Rci , i = 1..k of size n
k over each part P1, P2, ..., Pk

of Qck. In each of these graphs, for each pair of vertices, an edge exists with

probability (1− p). Moreover, let Rc =
∑k
i=1R

c
i .



Then, it is easy to see that

Qck +

k∑
i=1

Rci = Qck +Rc = Ac

Now, we will prove that the eigenvalues of Ac are bounded:
By applying Thm. 2 we have that:

λk(Ac) ≤ λ1(Rc) + λk(Qck)

Thm.5︷︸︸︷
≤

≤ λ1(Rc) + max
[
c
√
qn log n, c

√
(1− q)n log n

] Thm.2︷︸︸︷
≤

≤
k∑
i=1

λ1(Rci ) + max
[
c
√
qn log n, c

√
(1− q)n log n

] Thm.3︷︸︸︷
≤

≤ k ·max

[
c

√
p
n

k
log

n

k
, c

√
(1− p)n

k
log

n

k

]
+ max

[
c
√
qn log n, c

√
(1− q)n log n

]
≤

≤ c
[√

k

√
n log

n

k
max

[√
p,
√

1− p
]

+
√
n log nmax

[√
q,
√

1− q
]]

Hence,

λk(Ac) ≤ c
[√

k

√
n log

n

k
max

[√
p,
√

1− p
]

+
√
n log nmax

[√
q,
√

1− q
]]

Remark 2. Notice that the same bound holds for λk(A) since the switch of the
edge probabilities takes place inside the max and therefore does not alter the
result.

So we can directly write:

λk(A) ≤ c
[√

k

√
n log

n

k
max

[√
p,
√

1− p
]

+
√
n log nmax

[√
q,
√

1− q
]]

Moreover, by applying the same proof we can reach the following bound for
the negative λn−k(A):

λn−k(A) ≥ −c
[√

k

√
n log

n

k
max

[√
p,
√

1− p
]

+
√
n log nmax

[√
q,
√

1− q
]]

Combining these two results, we get the claimed bound. ut

By using Thm. 4 we get the following immediate corollary.



Corollary 1. Let G be a graph satisfying model Gp,q(n, k), let c be a sufficiently
large constant, a > 0 an arbitrary constant and n sufficiently large. Let LG the
normalized Laplacian matrix of G with 0 = λ1(LG) ≤ λ2(LG) ≤ · · · ≤ λn(LG)
its eigenvalues, and δ and ∆ the minimum and maximum degrees (respectively)
of G. Then:

λk(LG)

> 1− 1

δ
c

[√
k

√
n log

n

k
max

[√
p,
√

1− p
]

+
√
n log nmax

[√
q,
√

1− q
]]

with probability at least 1− n−a over the choice of LG.

Proof. We know that:

max [|λk(A)|, |λn−k(A)|]

≤ c
[√

k

√
n log

n

k
max

[√
p,
√

1− p
]

+
√
n log nmax

[√
q,
√

1− q
]]

By Thm. 4 we can bound the normalized Laplacian eigenvalues of G and get
the claimed result:

λk(L) > 1− 1

δ
c

[√
k

√
n log

n

k
max

[√
p,
√

1− p
]

+
√
n log nmax

[√
q,
√

1− q
]]
ut

Remark 3. Notice that because 1/
√

2 < max
[√
p,
√

1− p
]
< 2, all expressions of

the form max
[√
p,
√

1− p
]

can be absorbed in the unspecific constant c, giving
us the final form of the first section of Thm. 1.

3.3 All Eigenvalues Including the First and Last k

Theorem 7. Let G be a graph satisfying model Gp,q(n, k), let c be a sufficiently
large constant, a > 0 an arbitrary constant and n sufficiently large. Let, LG
be the normalized Laplacian matrix, and δ and ∆ the minimum and maximum
degrees (respectively) of G. Then:

For each 1 ≤ u ≤ s : λu(LG) > 1− 1

δ
max

[
c
√
qn log n, c

√
(1− q)n log n

]
For each s+ 1 ≤ v ≤ n : λv(LG) > 1 +

1

∆
max

[
c
√
qn log n, c

√
(1− q)n log n

]
with probability at least 1− n−a over the choice of LG.

Proof. In order to prove that the last k eigenvalues are bounded w.h.p. we will
use our known result Thm. 3 for random graphs and Lemma 1.

Assume the following construction.



– Begin with a graph G satisfying our model Gp,q(n, k), with Ck clusters; and
– Remove each edge inside a cluster with independent probability (1− q

p ).

– Call the resulting graph G−.

Notice that after the above procedure finishes, the event of an edge eC =
(u, v) : u, v ∈ Ci for some i = 1..k, existing in G− is:

Pr[eC ∈ G−] = Pr[eC ∈ G] · Pr[eCnot to be deleted] = p · 1−
(

1− q

p

)
= q

Moreover, the event of an edge eX = (u′, v′) : u ∈ Ci, v ∈ Cj for i 6= j,
existing in G− is:

Pr[eX ∈ G−] = Pr[eX ∈ G] = q

So, for any edge e: Pr[e ∈ G−] = q
Hence, with this construction we have created a new graph G− that is a

proper subset of G, and both G−, G are connected with high probability since
the probability of any edge existing in any of them is at least q > logn

n .
By Lemma 1, it follows that with high probability λ(LG) > λ(LG−) ⇒

λ(LG) > λ(LG−).
Also, notice that G− satisfies the prerequisites of Thm. 3, and as such:

max [|λ2(AG−)|, |λn(AG−)|] ≤ max
[
c
√
qn log n, c

√
(1− q)n log n

]
Assume that λs(AG−), where 1 ≤ s ≤ n is the smallest positive eigenvalue

of AG− . We can separate the positive and the negative eigenvalues and apply
Thm. 4 to get the bounds for the normalized Laplacian of G−:

For each 1 ≤ u ≤ s for which λu(AG−) > 0 we get

λu(LG) > λu(LG−) > 1− 1

δ
max

[
c
√
qn log n, c

√
(1− q)n log n

]
For each s+ 1 ≤ v ≤ n for which λv(AG−) ≤ 0 we get

λv(LG) > λv(LG−) > 1 +
1

∆
max

[
c
√
qn log n, c

√
(1− q)n log n

]
And the statement is proved. ut

Remark 4. The expected degree of each node in Gp,q(n, k) is E[deg] = pnk +

q n(k−1)k . By using standard Chernoff bound arguments (see also [BOL1], [BOL2])
we can obtain that w.h.p.

δ ≥ pn
k

+ q
n(k − 1)

k
−Θ

(√
p
n

k
+

√
q
n(k − 1)

k

)
and

∆ ≤ pn
k

+ q
n(k − 1)

k
+Θ

(√
p
n

k
+

√
q
n(k − 1)

k

)
.

Here Θ denotes some absolute constant. We omit expressing the above eigenvalue
bounds using the degree guarantees for the sake of presentation.



4 Conclusion and Open Questions

We believe that our bounds will prove extremely useful in semi-definite pro-
gramming based exact algorithms for k-clustering of semi-random graphs. In
particular, we believe that those bounds can be used to show that a Feige-
Kilian type semidefinite program will recover those clusters with high proba-
bility. It would also be interesting to see similar spectral analysis for different
models of semi-random graphs, and particularly those that appear in machine
learning applications. Our eigenvalue bounds are also of independent interest
in the area of spectral graph theory. They exhibit once more the connection
between small set expansion and higher eigenvalues, as seen in previous works
[LOT12, LRTV11, LRTV12, OW12].
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