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Abstract

We present a simple construction and analysis of an Ω(log logN) integrality gap for the well-
known Sparsest Cut semi-definite program (SDP). This holds for the uniform demands version
(i.e. edge expansion). The same quantitative gap was proved earlier by Devanur, Khot, Saket,
and Vishnoi [STOC 2006], following an integrality gap for non-uniform demands due to Khot
and Vishnoi [FOCS 2005]. These previous constructions involve a complicated SDP solution
and analysis, while our gap instance, vector solution, and analysis are somewhat simpler and
more intuitive.

Furthermore, our approach is rather general, and provides a variety of different gap examples
derived from quotients of the hypercube. It also illustrates why the lower bound is stuck at
Ω(log logN), and why new ideas are needed in order to derive stronger examples.



1 Introduction

Certainly the notion of graph expansion plays a central role in the modern theory of computation.
Moreover, given an input graph G = (V,E), the computational problem of computing the least
expanding set in G, or the extent to which G is an expander, is a fundamental one in algorithm
design. If we let E(S, S̄) denote the set of edges between S ⊆ V and its complement and define

Φ(G) = min
{
|E(S, S̄)|
|S||S̄|

: S ⊆ V
}
,

then calculating Φ(G) (and the set which achieves the minimum) if the well-known uniform Sparsest
Cut problem. Since the problem is NP-hard, much recent work has focused on approximating Φ(G).

The first such algorithm, due to Leighton and Rao [?], achieved an O(logN)-approximation,
where N = |V |, and was based on a linear programming relaxation that computes an all-pairs
multi-commodity flow in G. Later, Linial, London, and Rabinovich [?], and Aumann and Rabani
[?], found a connection between rounding this linear programming (and its generalizations) and the
problem of embedding finite metric spaces into L1.

Around this time, a natural semi-deifnite programming (SDP) relaxation was proposed. This
relaxation can be written succinctly as

SDP(G) = min

{∑
uv∈E ‖xu − xv‖2∑
u,v∈V ‖xu − xv‖2

: ‖xu − xv‖2 ≤ ‖xu − xw‖2 + ‖xw − xv‖2 ∀u, v, w ∈ V

}
,

where the minimum ranges over all vectors {xu}u∈V ⊆ RN−1. The latter constraints are referred
to alternatively as the “negative-type inequalities,” the “`22 inequalities,” or the “squared triangle
inequalities,” and the geometric constraints they place on the solution are still poorly understood.

In fact, Goemans and Linial [?, ?] conjectured that the integrality gap of this relaxation is only
O(1) (in fact, they conjectured that a more general “non-uniform” version of the problem satisfied
this bound). In a seminal work of Arora, Rao, and Vazirani [?], it was shown that the integrality
gap is at most O(

√
logN), but the question of lower bounds on the integrality gap remained open,

largely because of the difficulty of producing interesting systems of vectors that satisfied the `22
inequalities.

Finally, in a remarkable paper, Khot and Vishnoi [?] disproved the non-uniform Goemans-Linial
conjecture using a connection with the Unique Games conjecture [?]. A year later, Devanur, Khot,
Saket, and Vishnoi [?] showed how one can obtain a gap for the uniform version defined above.
Their quantitative lower bound is Ω(log logN), and the exponential gap between this and the
O(
√

logN) upper bound still remains.

Problematically, both the constructions of [?] and [?] are shrouded in mystery. The construction
and analysis have often been referred to as “difficult,” “impenetrable,” “extremely technical,” and
“magic” (the last description coming from the authors themselves). The goal of the present work
is to present a simple, self-contained construction and analysis of an Ω(log logN) integrality gap.
Our inputs instances, vector solutions, and analysis are all simpler and more intuitive than their
counterparts in [?] and [?].

It is difficult to overestimate the importance of the Sparsest Cut problem, the preceding SDP,
and its place in the larger theory of approximation algorithms. We mention, first of all, that
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the algorithm and analysis of [?] drove a huge wave of new results in approximation algorithms.
Furthermore, the Sparsest Cut problem and the analysis of this SDP were some of the primary
driving forces in the field of metric embeddings, and led to a number of beautiful results and
connections. The SDP combines the flow-based constraints of the Leighton-Rao LP, together with
the second (Laplacian) eigenvalue bound used in spectral partitioning (see [?] and also Section C),
and in this sense represents a new frontier in algorithm design.

Finally, we mention that the uniform Sparsest Cut problem is still very poorly understood from
the standpoint of approximation algorithms. It is known to be hard to approximate within 1 + ε0,
for some small constant ε0 > 0, unless NP has subexponential-time algorithms [?], but no better
lower bound is known, even assuming the unique games conjecture. On the other hand, as we
previously mentioned, the best upper bound is O(

√
logN).

1.1 Outline, and an intuitive overview

Our gap instances are simply quotients of the standard hypercube—which we will represent by
Qn = {−1√

n
, 1√

n
}n—under some action by permutations of the coordinates. The sparsity of cuts in

these graphs was studied by Khot and Naor [?], and those authors also suggested them as a possible
source for integrality gaps.

For instance, consider the cyclic shift operator σ(x1, x2, . . . , xn) = (x2, . . . , xn, x1), and define
the quotient metric

d(u, v) = min
{
‖u− σiv‖1 : i = 0, 1, . . . , n− 1

}
,

which is clearly σ-invariant, i.e. d(u, v) = d(σu, v) = d(u, σv), and hence actually a metric on
the orbits of Qn under the action of σ. It is straightforward to verify that d satisfies the triangle
inequality.

Our approach is simply to define vectors {xu}u∈Qn such that ‖xu − xv‖2 ≈ d(u, v) holds for all
u, v ∈ P, where P is a certain “pseudorandom” subset of Qn, and |Qn \ P| = o(|Qn|). We use this
connection (and the fact that d is a metric) to prove the triangle inequalities for {xu}u∈P . We then
map all the points of Qn \ P to some fixed xu0 for u0 ∈ P. Being such a small fraction of points,
their contribution to the SDP is inconsequential.

For cyclic shifts, our vector solution is essentially the following,

xu =
1√
n

n−1∑
i=0

(σiu)⊗t, (1)

for some small t = O(1) (see Section 3 for a more detailed overview). In general, we simply average
over the action of a group, and take small tensor powers (see Section 2 for a review of tensor
products).

Now, our P is essentially the set of points whose orbits are not too self-correlated, e.g. points
u ∈ Qn with 〈u, σiu〉 ≤ n−1/3, say, for every i ∈ {1, 2, . . . , n−1}. To show that d(u, v) ≈ ‖xu−xv‖2
for u, v ∈ P, we will assume that ‖xu‖ = 1 for every u ∈ P (this is almost true, by virtue of the
definition of P). In this case, it suffices to prove that 1− 〈xu, xv〉 ≈ 1− λ(u, v), where

λ(u, v) = max
{
〈u, σiv〉 : i = 0, 1, . . . , n− 1

}
is the associated “quotient inner product.”
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To see that this holds, we write

〈xu, xv〉 =
n−1∑
i=0

〈u, σiv〉t. (2)

Now, if λ(u, v) ≥ 1 − δ, then 〈xu, xv〉 ≥ (1 − δ)t ≥ 1 − δt. On the other hand, if 〈xu, xv〉 ≥ 1 − δ,
we need to find a single i ∈ [n] for which 〈u, σiv〉 ≈ 〈xu, xv〉. Since we are taking tth powers in
(2), any small inner products 〈u, σjv〉 are dampened out. But if there were two distinct indices
i, j for which 〈u, σiv〉 and 〈u, σjv〉 were both moderately large, then 〈u, σi−ju〉 would also be large,
which doesn’t happen because u ∈ P. Hence 〈xu, xv〉 can only be close to 1 if the contribution
comes almost entirely from one shift. This matching property is precisely what yields the triangle
inequalities.

Outline. A more precise version of this argument for cyclic shifts is presented in Section 3, while
the full argument (and for general quotients) is given in Section 4. In Section A.1, we discuss
why vector solutions like (1) are probably insufficient for going beyond a gap of Ω(log logN). It is
suggested that the reader first review Section 2 for some definitions and terminology.

In Section B, we consider group actions where the groups are quite large (e.g. exp(
√
n)) so

that (1) will no longer work, but a different embedding succeeds in giving a valid vector solution.
Unfortunately, it is also fairly easy to see that this is example has an integrality gap of O(log logN),
but the technique may be useful for future constructions. Finally, in Section C, we discuss the
SDP dual and give some open questions whose resolution would further simplify integrality gap
constructions.

2 Preliminaries

We first discuss some preliminary notions and theorems that will be used throughout the paper.
Asymptotic notation. For expressions A and B, we will use the notation A . B to denote
A = O(B), and A ≈ B to denote the conjunction of A . B and A & B.

Sparsity of graphs. We will consider undirected graphs G = (V,E) where every edge (u, v) has
a non-negative weight w(u, v). For any subset E′ ⊆ E of edges, we write w(E′) =

∑
e∈E′ w(e). For

two sets S, T ⊆ V , we write E(S, T ) for the set of edges with one endpoint in S and one in T .
For a subset S ⊆ V , we use

Φ(S) =
w(E(S, S̄))
|S||S̄|

to denote the sparsity of S. We then write Φ(G) = minS⊆V Φ(S) for the sparsest cut value of G.
We will be particularly interested in graphs derived from the (unweighted) n-dimensional hy-

percube Qn =
{
−1√
n
, 1√

n

}n
. We will use Qn to denote the set of vertices in the n-cube, and E(Qn)

to denote the set of edges. The classical discrete isoperimetric inequality shows that if we write
Si = {x ∈ Qn : xi < 0}, then for every i ∈ [n],

Φ(Qn) = Φ(Si) =
4|E(Si, S̄i)|
|Qn|2

≈ |Qn|−1.

A well-known theorem of Kahn, Kalai, and Linial [?] then asserts the following.
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Theorem 2.1 (KKL Theorem). For any S ⊆ Qn, there exists an i ∈ [n] for which

|E(S, S̄) ∩ E(Si, S̄i)|
|S||S̄|

&
log n
n

Φ(Qn).

Weighted “quotients” of the cube. Let Γ be any group acting on [n] = {1, 2, . . . , n} by
permutations. We can naturally extend Γ to act on Qn via π(x1, . . . , xn) = (xπ(1), . . . , xπ(n)) for
any π ∈ Γ. For an element u ∈ Qn, we use Γu to denote the Γ-orbit of u. We refer to a subset
S ⊆ Qn as Γ-invariant if ΓS = S.

We define a weighted graph Qn/Γ as follows. The vertices are simply those of Qn, and the edges
are E(Qn) ∪ E′, where E′ = {(u, v) : u ∈ Γv}. We define

w(e) =

{
1 e ∈ E(Qn)
22n e ∈ E′.

The point of this choice is to ensure that Φ(Qn/Γ) = Φ(S) is always achieved by a Γ-invariant set
S, since separating any Γ-orbit involves cutting an edge of very large value. (Note that, because
we are only using weights which are polynomial in the graph size, our gap examples can easily be
made unweighted.)

We recall that Γ is said to act transitively on [n] if for every i, j ∈ [n], there exists a permutation
π ∈ Γ with π(i) = j. From Theorem 2.1, one can easily derive the following.

Theorem 2.2 (Transitive actions). If Γ acts transitively on [n], then Φ(Qn/Γ) & Φ(Qn) log n.

Proof. We know that Φ(Qn/Γ) = Φ(S) for some Γ-invariant set S. By Theorem 2.1, there exists
an i ∈ [n] for which

|E(S, S̄) ∩ E(Si, S̄i)|
|S||S̄|

&
log n
n

Φ(Qn).

But for any other j ∈ [n], there exists an action π ∈ Γ with π(i) = j, hence

|E(π(S), π(S̄)) ∩ E(Sj , S̄j)|
|π(S)||π(S̄)|

=
|E(S, S̄) ∩ E(Si, S̄i)|

|S||S̄|
,

implying that

Φ(S) =
n∑
j=1

|E(S, S̄) ∩ E(Sj , S̄j)|
|S||S̄|

= n · |E(S, S̄) ∩ E(Si, S̄i)|
|S||S̄|

& Φ(Qn) log n.

The Sparsest Cut SDP. Given a weighted graph G = (V,E), we recall the standard SDP
relaxation of Sparsest Cut,

SDP(G) = min

{∑
uv∈E w(u, v)‖xu − xv‖2∑

u,v∈V ‖xu − xv‖2
: ‖xu − xv‖2 ≤ ‖xu − xw‖2 + ‖xw − xv‖2 ∀u, v, w ∈ V

}
,

where the minimum is taken over all choices of vectors {xu}u∈V lying in some finite-dimensional
Euclidean space. It is well-known that SDP(Qn) = Φ(Qn) ≈ |Qn|−1.
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We say that a vector solution {xu}u∈Qn is Γ-invariant if xu = xπ(u) for all u ∈ Qn and π ∈ Γ.
Observe that a Γ-invariant solution for the Sparsest Cut SDP on Qn/Γ has value∑

uv∈E(Qn) ‖xu − xv‖2∑
u,v∈Qn ‖xu − xv‖2

,

since all elements of a Γ-orbit are mapped to the same vector.

Weak triangle inequalities and pseudometrics. For the sake of exposition, we will also define
an “SDP value” for solutions satisfying a weak form of the triangle inequalities. We recall that for
any set X, a non-negative, symmetric function d : V × V → R is called a pseudometric on V if it
satisfies the triangle inequalities, i.e. d(u, v) ≤ d(u,w)+d(w, v) for all u, v, w ∈ V , and additionally
d(u, u) = 0 for all u ∈ V .

For any β ≥ 1, let

SDPβ(G) = min

{∑
uv∈E w(u, v)‖xu − xv‖2∑

u,v∈V ‖xu − xv‖2
: d(u, v) ≤ ‖xu − xv‖2 ≤ βd(u, v)

}
,

where the minimum is over all choices of vectors {xu}u∈V , and additionally over all pseudometrics
d on V . Observe that SDP(G) = SDP1(G). One might also note that the Arora-Rao-Vazirani
algorithm [?], and all known analyses derived from it, only use the weaker SDPO(1) inequalities.

Tensoring. We recall that for two vectors x, y ∈ Rk and t ∈ N, we have the tensored vectors
x⊗t, y⊗t ∈ Rkt which satisfy 〈x⊗t, y⊗t〉 = 〈x, y〉t.

Finally, we need the following tail inequality.

Lemma 2.3 (Hoeffding bound). Let X1, X2, . . . , Xn be independent random variables with EXi = 0
for every i ∈ [n]. Then,

Pr

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ L
]
≤ 2 exp

(
−L2

2
∑n

i=1 ‖Xi‖2∞

)
.

3 A simple example: Cyclic shifts

Consider the cyclic shift operator σ : [n] → [n] defined by σ(i) = (i + 1) mod n, and let Γ =
{σ0, σ1, . . . , σn−1} be the group of permutations generated by σ. By Theorem 2.2, we have
Φ(Qn/Γ) & Φ(Qn) log n. On the other hand, we will now show that the “weak” SDP value of
Qn/Γ is approximately SDP(Qn), thus exhibiting a (weak) SDP gap of Ω(log n) = Ω(log log |Qn|).
This will illustrate the main ideas behind our proof for general quotients, and the true SDP value
will be analyzed in the next section.

Theorem 3.1. For n ∈ N, SDP16(Qn/Γ) . SDP(Qn).

Proof. For every u ∈ Qn, we define the vector

xu =
1√
n

n−1∑
i=0

(σiu)⊗8,
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and put x̃u = xu/‖xu‖. Observe that

〈xu, xv〉 =
1
n

n−1∑
i,j=0

|〈σiu, σjv〉|8 =
n−1∑
i=0

|〈u, σiv〉|8. (3)

We now define a subset of “pseudorandom” vertices of Qn whose orbits under Γ are not too self-
correlated,

P =

{
u ∈ Qn :

n−1∑
i=0

|〈u, σiu〉|6 ≤ 1 +
1

4n

}
.

Note that, by Cauchy-Schwarz, for u, v ∈ P, we have

n−1∑
i=0

|〈u, σiv〉|6 ≤

√√√√n−1∑
i=0

|〈u, σiu〉|6

√√√√n−1∑
i=0

|〈v, σiv〉|6 ≤ 1 +
1

4n
. (4)

(To see this, observe that
∑n−1

i=0 |〈u, σiv〉|6 is an inner product, as in (3).)

Most vertices are pseudorandom. For any u ∈ Qn, we can write

〈u, σu〉 =
∑

1≤i≤n
i even

uiuσ(i) +
∑

1≤i≤n
i odd

uiuσ(i) = T + T ′,

where each ui appears exactly once in each of the sums T and T ′. It is easy to see that a similar
decomposition holds for 〈u, σiu〉 for any i ∈ {1, 2, . . . , n− 1}.

Therefore by Lemma 2.3, we have

Pr
u∈Qn

[
|〈u, σiu〉| ≥ 2t/

√
n
]
≤ Pr

[
|T | ≥ t/

√
n
]

+ Pr
[
|T ′| ≥ t/

√
n
]
≤ 4e−t

2/2, (5)

since each of T and T ′ is a sum of i.i.d. uniform elements of {± 1
n}. Setting t = n1/3/2 and taking

a union bound over i = 1, 2, . . . , n− 1 yields

Pr
u∈Qn

[
n−1∑
i=0

|〈u, σiv〉|6 > 1 +
1

4n

]
≤ 4ne−n

2/3/8 ≤ n−2, (6)

for n sufficiently large, hence |P| ≥ |Qn|(1− n−2).

The SDP value. Fix some u0 ∈ P. Our final SDP solution will consist of the vectors {x′u}u∈Qn
with x′u = x̃u for u ∈ P and x′u = x̃u0 otherwise. Thus we will only need to verify the weak triangle
inequalities for {x̃u}u∈P . It is clear that our proposed SDP solution is Γ-invariant.

For an edge (u, v) ∈ E(Qn), using (3), we have

〈xu, xv〉 ≥ |〈u, v〉|8 =
(

1− 2
n

)8

≥ 1− 16
n
.

Hence for u, v ∈ P with (u, v) ∈ E(Qn), we have ‖x̃u − x̃v‖2 = O(1/n). In particular,∑
(u,v)∈E(Qn)

‖x′u − x′v‖2 .
|E(Qn)|

n
+ 4|E(Qn \ P)| . |E(Qn)|

n
, (7)
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since |Qn \ P| ≤ |Qn|/n2.
On the other hand, if we choose u, v ∈ Qn at random, then for any i ∈ [n], using Lemma 2.3,

Pr
u,v∈Qn

[
|〈u, σiv〉| ≥ t/

√
n
]
≤ 2e−t

2/2.

Setting t ≈
√

log n and taking a union bound over all i ∈ [n] shows that for n sufficiently large,
Pru,v∈Qn [|〈xu, xv〉| ≥ 1

4 ] ≤ 1
2 . In particular,∑

u,v∈Qn

‖x′u − x′v‖2 ≥
∑
u,v∈P

‖x̃u − x̃v‖2 ≈
∑
u,v∈P

‖xu − xv‖2 & |P|2 & |Qn|2.

Combining the preceding line with (7) shows that the value of the potential SDP solution {x′u}u∈Qn
is O(|Qn|−1) = O(SDP(Qn)).

Verifying the weak triangle inequalities. We are thus left to verify the weak triangle inequal-
ities for {x̃u}u∈P . To this end, we will define a cyclic shift-invariant metric d on Qn and then show
that for u, v ∈ P, we have d(u, v) ≈ ‖x̃u − x̃v‖2.

Let λ(u, v) = max{|〈u, σiv〉| : i ∈ [n]} and put d(u, v) = 1 − λ(u, v)8. It is clear that d(u, v) =
d(σu, v) = d(u, σv). Next, observe that for any u, v, w ∈ Qn, we have

1 + 〈u, v〉 ≥ 〈u,w〉+ 〈v, w〉,

since the inequality 1 + xy ≥ xz + yz for x, y, z ∈ {−1, 1} is straightforward to verify. Observing
that u⊗8, v⊗8, w⊗8 ∈ Qn8 , it follows that

1 + |〈u, v〉|8 ≥ |〈u,w〉|8 + |〈v, w〉|8. (8)

Now suppose that i, j ∈ N are such that λ(u,w) = |〈σiu,w〉| and λ(v, w) = |〈σjv, w〉|. In that case,
we have

1 + λ(u, v)8 ≥ 1 + |〈σiu, σjv〉|8

≥ |〈σiu,w〉|8 + |〈σjv, w〉|8

= λ(u,w)8 + λ(v, w)8,

where the second inequality is simply (8). Rearranging shows that the preceding inequality is
precisely d(u, v) ≤ d(u,w) + d(v, w), i.e. that d satisfies the triangle inequality.

We are thus left to show that 1− λ(u, v)8 ≈ 1− 〈x̃u, x̃v〉 for u, v ∈ P. If λ(u, v) = 1, then both
expressions are 0, so we may assume that λ(u, v) 6= 1. One direction is easy: Using the fact that if
λ(u, v) 6= 1, then λ(u, v)8 ≤ λ(u, v) ≤ 1− 2

n , we have

1− 〈x̃u, x̃v〉 ≤ 1− (1 + 1
4n)−1〈xu, xv〉

≤ 1− (1 + 1
4n)−1λ(u, v)8

≤ 1− (1− 1
4n)λ(u, v)8

≤ 2
[
1− λ(u, v)8

]
.

Now, the key to satisfying the (weak) triangle inequalities is the following simple calculation:

〈x̃u, x̃v〉 ≤ 〈xu, xv〉 =
n−1∑
i=0

|〈u, σiv〉|8 ≤ λ(u, v)2
n−1∑
i=0

|〈u, σiv〉|6 ≤ (1 + 1
4n)λ(u, v)2,
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where in the last inequality, we have used u, v ∈ P. Thus assuming 〈x̃u, x̃v〉 = 1− δ, we get

λ(u, v)8 ≥
(

(1− δ)
(

1− 1
4n

))4

≥ 1− 4
(
δ +

1
4n

)
,

but λ(u, v) ≤ 1− 2
n , hence δ ≥ 1

4n so that λ(u, v)8 ≥ 1−8δ, implying 1−λ(u, v)8 ≤ 8(1−〈x̃u, x̃v〉).

4 General quotients

In the present section, we derive SDP solutions for “pseudorandom” subsets of general quotient
constructions. Unlike the previous section, we will ensure that these solutions satisfy the full
triangle inequalities.

4.1 Metrics and kernels

Fix a subgroup Γ acting on [n] by permutations. We let ψΓ = max {|Γu| : u ∈ Qn} be the maximum
size of any Γ-orbit. For u, v ∈ Qn, we define

λ(u, v) = max
π∈Γ
|〈u, πv〉|,

and for every t ∈ N,
αt(u, v) =

∑
π∈Γ

|〈u, πv〉|2t,

and
αt(u, v) =

αt(u, v)√
αt(u, u)αt(v, v)

.

Finally, we define two distance functions on Qn corresponding to λ and αt, respectively. For
s, t ∈ N, define

ρs,t(u, v) = 1−
(

1
2

+
1
2
λ(u, v)2t

)s
Ks,t(u, v) = 1−

(
1
2

+
1
2
αt(u, v)

)s
.

Lemma 4.1. For every t ∈ N, both αt and αt are positive semi-definite kernels on Qn. For every
s ∈ N, the same is true for (u, v) 7→

(
1
2 + 1

2αt(u, v)
)s.

Proof. If we define f : Qn → Rn2t
by f(u) = |Γ|−1/2

∑
π∈Γ(πu)⊗2t then αt(u, v) = 〈f(u), f(v)〉 and

αt(u, v) =
〈

f(u)
‖f(u)‖2 ,

f(v)
‖f(v)‖2

〉
. For the final implication, note that the sum of two PSD kernels is

PSD, and also a positive integer power of a PSD kernel is PSD.

From Lemma 4.1 and the fact that 0 ≤ αt(u, v) ≤ 1 for all u, v ∈ Qn, one verifies that Ks,t is
a negative-definite kernel on Qn, i.e. there exists a system of (unit) vectors {xu}u∈Qn such that
‖xu − xv‖2 = Ks,t(u, v).

It is clear that both functions ρs,t and Ks,t are Γ-invariant in both coordinates. We will now show
that ρs,t is a metric. In Section 4.2, we will show that Ks,t(u, v) ≈ ρs,t(u, v) for “pseudorandom”
u, v ∈ Qn. This will motivate our analysis of the metrical properties of Ks,t in Section A.
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Lemma 4.2. If 0 ≤ a ≤ b ≤ c ≤ 1 and 1 + a ≥ b+ c, then for any r ≥ 1, ar − br − cr ≥ a− b− c.
In particular, for any a, b, c ∈ [0, 1], 1 + a ≥ b+ c implies 1 + ar ≥ br + cr.

Proof. We may assume that a 6= 1. In this case, write b and c as a convex combination of a and
1 as follows: b = 1−b

1−aa + (1 − 1−b
1−a) and c = 1−c

1−aa + (1 − 1−c
1−a). Now, using the fact that x − xr is

concave for x ∈ [0, 1] and r ≥ 1, write

(b− br) + (c− cr) ≥ 1− b
1− a

(a− ar) +
1− c
1− a

(a− ar) ≥ 2− b− c
1− a

(a− ar) ≥ a− ar,

where the final inequality follows from 1 +a ≥ b+ c. To verify the second claim of the lemma, note
that if a > b or a > c, then 1 + ar ≥ br + cr holds trivially.

Corollary 4.3. Let X be any set, U : X ×X → [0, 1], and s ≥ 1. If D′(x, y) = 1− (1
2 + 1

2U(x, y))s

is a pseudometric on X, then so is D(x, y) = 1− (1
2 + 1

2U(x, y))s
′

for any s′ ≥ s.

Proof. The triangle inequality for D on x, y, z ∈ X reduces to verifying

1 + (1
2 + 1

2U(x, y))s
′ ≥ (1

2 + 1
2U(x, z))s

′
+ (1

2 + 1
2U(y, z))s

′
.

Since s′ ≥ s, Lemma 4.2 implies that this reduces to the triangle inequality for D′.

Lemma 4.4. For every s, t ∈ N, ρs,t is a pseudometric on Qn.

Proof. By Corollary 4.3, it suffices to prove this for ρ1,t. It’s clear that for any u ∈ Qn, ρ1,t(u, u) = 0
because λ(u, u) = 1. Now fix u, v, w ∈ Qn. The triangle inequality ρ1,t(u, v) ≤ ρ1,t(u,w)+ρ1,t(v, w)
reduces to verifying

1 + λ(u, v)2t ≥ λ(u,w)2t + λ(v, w)2t. (9)

Suppose that λ(u,w) = |〈πu,w〉| and λ(v, w) = |〈v, π′w〉|. Then,

λ(u, v)2t ≥ |〈πu, π′v〉|2t

≥ |〈πu,w〉|2t + |〈π′v, w〉|2t − 1 (10)
= λ(u,w)2t + λ(v, w)2t − 1,

where (10) follows just as in (8).

Before turning to the precise relationship between Ks,t and ρs,t, we calculate ρs,t(u, v) for edges
and for random pairs in Qn.

Lemma 4.5 (Edges). If u, v ∈ E(Qn), then ρs,t(u, v) ≤ 2st
n .

Proof. Observe that

λ(u, v)2t ≥
(

1− 2
n

)2t

≥ 1− 4t
n
,

hence ρs,t(u, v) ≤ 1− (1− 2t
n )s ≤ 2st

n .

The next lemma is a straightforward application of Lemma 2.3 and a union bound.
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Lemma 4.6 (Random pairs). Suppose that u, v ∈ Qn are chosen independently and uniformly at
random. Then,

Pr
[
λ(u, v)2t ≥ L

]
≤ 2ψG exp

(
−L1/tn

2

)
.

In particular, for any s, t ∈ N, if ψΓ ≤ 20.1n, then

Pr[ρs,t(u, v) ≥ 1
4 ] ≥ Pr[λ(u, v)2t ≤ 1

2 ] ≥ 1
2 .

4.2 Pseudorandom orbits and ρs,t ≈ Ks,t

For r ∈ N, define
Pr(η) = {u ∈ Qn : αr(u, u) ≤ 1 + η}

as the set of all elements whose Γ-orbits are not too self-correlated. Note that, by Cauchy-Schwarz,
u, v ∈ Pr(η) implies αr(u, v) ≤

√
αr(u, u)αr(v, v) ≤ 1 + η.

The next lemma is central. It says that if αt(u, v) is large and u, v are pseudorandom, then
the contribution to αt(u, v) comes mainly from a single large “matching” term, i.e. u is strongly
correlated with some element of Γv.

Lemma 4.7. Let t > r and δ ∈ [0, 1]. If u, v ∈ Pr(η) and αt(u, v) ≥ 1− δ, then

λ(u, v)2(t−r) ≥ 1− δ − η.

Proof. We have,

αt(u, v) ≤ λ(u, v)2t−2r
∑
π∈Γ

|〈u, πv〉|2r = λ(u, v)2(t−r)αr(u, v) ≤ (1 + η)λ(u, v)2(t−r).

It follows that λ(u, v)2(t−r) ≥ 1−δ
1+η ≥ 1− δ − η.

Theorem 4.8 (Weak triangle inequality for Ks,t). For every r, s ∈ N and u, v ∈ Pr( 1
4n),

ρs,2r(u, v) ≈ Ks,2r(u, v),

where the implicit constant is independent of the given parameters.

Proof. Let η = 1
4n and t = 2r, and suppose that u, v ∈ Pr(η). If λ(u, v) = 1, then αt(u, v) = 1 as

well, hence ρs,t(u, v) = Ks,t(u, v).
Now suppose that λ(u, v) 6= 1. In that case,

λ(u, v)2t ≤
(
1− 2

n

)2t ≤ 1− 2
n . (11)

Assume that αt(u, v) = 1− δ for some δ ∈ [0, 1]. Then, αt(u, v) ≥ αt(u, v) ≥ 1− δ, so Lemma 4.7
implies that λ(u, v)2t ≥ (1− δ − η)2 ≥ 1− 2(δ + η), and from (11), we conclude that δ ≥ 3

4n . This,
in turn, implies that η ≤ δ/3, which gives λ(u, v)2t ≥ 1− 3δ.

Finally, we observe that

αt(u, v) ≥ (1− η)αt(u, v) ≥ (1− δ/3)αt(u, v) ≥ (1− δ/3)λ(u, v)2t,

hence λ(u, v)2t ≤ (1− δ)(1 + δ/3) ≤ 1− 2δ
3 . We have thus shown that 1− λ(u, v)2t and 1−αt(u, v)

are within an O(1) factor for all u, v ∈ Pr(η).

Verification of the full triangle inequalities occurs in Appendix A.
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A Triangle inequalities

In this section, we verify that K22,t is a pseudometric on Pr( 1
(4n)2 ) for t = O(r). In other words,

the corresponding vectors form a valid SDP solution.

Theorem A.1. For some t = O(r), K22,t is a pseudometric on Pr( 1
(4n)2 ).

Proof. Let η = 1
(4n)2 , and fix u, v, w ∈ Pr(η). To prove triangle inequality for Ks,t, it suffices to

show that
1 + (1

2 + 1
2αt(u, v))s ≥ (1

2 + 1
2αt(u,w))s + (1

2 + 1
2αt(v, w))s.

If both αt(u,w), αt(v, w) ≤ 15
16 , then for s = 22, both terms are the right hand side are at most 1

2 ,
and the inequality is trivially satisfied. So we assume that αt(u,w) ≥ 15

16 for the remainder of the
proof.

By Corollary 4.3, to prove triangle inequality for K22,t, it suffices to prove the same inequality
for K1,t or K2,t, i.e. one of the following inequalities.

3 + αt(u, v)[2 + αt(u, v)] ≥ αt(u,w)[2 + αt(u,w)] + αt(v, w)[2 + αt(v, w)]
1 + αt(u, v) ≥ αt(u,w) + αt(v, w).

Clearly both of these hold if λ(u,w) = 1 or if λ(w, v) = 1, so we assume this is not the case, and
we are left to prove one of the following.

3 + αt(u, v)[2 + αt(u, v)] ≥ αt(u,w)[2 + αt(u,w)] + αt(v, w)[2 + αt(v, w)] + 5η (12)
1 + αt(u, v) ≥ αt(u,w) + αt(v, w) + 2η, (13)

recalling that αt(u, v) ≤ αt(u, v) ≤ (1 + η)αt(u, v) for all u, v ∈ Pr(η). We remark that this loss
in η will be acceptable beacuse when two points u, v ∈ Qn are distinct, they have |〈u, v〉| ≤ 1− 4

n ,
giving us ≈ 1

n slack when the orbits of u, v, and w are distinct.

Case I (Strong matching): λ(u,w), λ(v, w) ≥ 1− 1
2t .

Let λ(v, w) = 1− δ, λ(u,w) = 1− ε, and observe that λ(u, v) ≥ 1− (δ + ε) by (9). Also, since
λ(u,w) 6= 1 and λ(w, v) 6= 1, we have δ, ε ≥ 4

n , and in particular η ≤ εδ. We will verify (13). Write,

αt(v, w) ≤ (1− δ)2t +
(
αr(v, w)− (1− δ)2r

)t/r ≤ (1− δ)2t + (η + 2rδ)t/r, (14)

and similarly αt(u,w) ≤ (1− ε)2t + (η + 2rε)t/r.
Using the preceding inequalities, to prove (13), it suffices to show that

1 + (1− (δ + ε))2t − (1− δ)2t − (1− ε)2t ≥ (η + 2rδ)t/r + (η + 2rε)t/r + 5η. (15)
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But we have,

1 + (1− (δ + ε))2t − (1− δ)2t − (1− ε)2t =
2t∑
i=2

(−1)i
(

2t
i

) i−1∑
j=1

(
i

j

)
δjεi−j


≥ 2

(
2t
2

)
δε−

(
2t
3

)
3δε(δ + ε)

= t(2t− 1)δε ([1− 2(t− 1)δ] + [1− 2(t− 1)ε])

≥ 2t(2t− 1)δε
(

1− 2(t− 1)
2t

)
= (2t− 1)δε
≥ ((2r + 1)δ)t/r + ((2r + 1)ε)t/r + 5εδ,

where the final inequality holds for some t = O(r) chosen large enough. This proves (15), recalling
that η ≤ εδ.

Case II (Weak matching): λ(v, w) ≤ 1− 1
2t .

Suppose that αt(u,w) = 1− δ. Our aim is to prove (12), which we write as

2 (αt(v, w)− αt(u, v)) + (αt(v, w)− αt(u, v)) (αt(v, w) + αt(u, v)) ≤ δ(4− δ)− 2η. (16)

Note that since αt(u,w) ≥ 15
16 , we have δ ≤ 1

16 . Furthermore, by Lemma 4.7, we have λ(u,w) ≥
1− δ+η

2(t−r) . In particular, for t = O(r) chosen large enough, we have λ(u,w) ≥ 1− 1
2t , which explains

why cases I and II are exhaustive.
Now, if αt(v, w) ≥ 0.65, then Lemma 4.7 implies λ(v, w) ≥ 1 − 0.35+η

2(t−r) ≥ 1 − 0.45
t for t ≥ 2r,

which contradicts our assumption. We conclude that αt(v, w) ≤ 0.65. In this case, we may assume
that αt(u, v) ≤ 0.7, since otherwise (13) is trivially satisfied, thus we have αt(u, v), αt(v, w) ≤ 0.7.

The main idea in the “weak matching” case is to show that αt(u, v) & αt(v, w), but we cannot
rely on a single “matched pair” (i.e. the triangle inqualities for λ) to do this. Instead, we argue
that αt(u, v) receives a large contribution on average.

To this end, write λ(u,w) = 1− β, and let π0 ∈ Γ be such that |〈π0u,w〉| = λ(u,w). Then,

αt(u, v) =
∑
π∈Γ

|〈π0u, πv〉|2t ≥
∑
π∈Γ

[max(0, |〈π0u,w〉|+ |〈w, πv〉| − 1)]2t ≥
∑
π∈Γ

[max(0, |〈w, πv〉| − β)]2t .

Let I = {π ∈ Γ : |〈w, πv〉| ≥ β}, and observe that∑
π/∈I

|〈w, πv〉|2t ≤ β2t−2r
∑
π/∈I

|〈w, πv〉|2r ≤ β2(t−r)αr(w, v) ≤ β2(t−r)(1 + η).
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Therefore,

αt(u, v) ≥
∑
π∈I

(|〈w, πv〉| − β)2t

≥
∑
π∈I
|〈w, πv〉|2t

(
1− β

|〈w, πv〉|2t

)2t

≥
∑
π∈I
|〈w, πv〉|2t

(
1− 2βt
|〈w, πv〉|2t

)

≥

(∑
π∈Γ

|〈w, πv〉|2t
)
− (1 + η)

[
β2(t−r) − 2βt

]
≥ αt(w, v)− (1 + η)

[
δ2(t−r) − (δ + η)

t

t− r

]
.

Plugging this into (16) and using αt(u, v), αt(v, w) ≤ 0.7 yields,

3.4(1 + η)
(
δ2(t−r) + (δ + η)

t

t− r

)
≤ δ(4− δ2)− 2η.

Now, since λ(u,w) 6= 1, we have λ(u,w) ≤ 1− 4
n , and using Lemma 4.7 gives δ ≥ 2t

n ; in particular,
η ≤ δ/16. Combining this with δ ≤ 1

16 , it suffices to prove

3.7
(

2δ2(t−r) + δ
t

t− r

)
≤ 3.8δ,

which certainly holds for some choice of t = O(r).

A.1 Integrality gaps

We now discuss the consequences of Theorem A.1 for integrality gaps.

Theorem A.2. Let Γ be any group acting on [n] with ψΓ ≤ 20.1n. If |Pr( 1
(4n)2 )| ≥ |Qn|(1− n−2),

then
SDP(Qn/Γ) ≤ O(r) SDP(Qn).

Proof. Let P = Pr( 1
(4n)2 ). Let C ≥ 1 be such that K22,Cr is a pseudometric on P, according to

Theorem A.1. By Lemma 4.1, K22,Cr is negative-definite kernel, i.e. there exists a system of vectors
{xu}u∈Qn such that ‖xu − xv‖2 = K22,Cr(u, v).

Fix some arbitrary u0 ∈ P. We define a new solution by

x′u =

{
xu u ∈ P
xu0 u /∈ P.

Certainly {x′u}u∈Qn is a Γ-invariant vector solution that satisfies the triangle inequalites. We are
left to compute the value of this solution.

First, for (u, v) ∈ E(Qn) with u, v ∈ P, by Theorem 4.8 and Lemma 4.5, we have

‖xu − xv‖2 = K22,Cr(u, v) ≈ ρ22,Cr(u, v) = O(r/n).
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Hence, ∑
uv∈E(Qn)

‖x′u − x′v‖2 . |E(Qn)| r
n

+ 4|E(Qn \ P)| . |E(Qn)| r
n
,

using |Qn \ P| ≤ |Qn|/n2.
On the other hand, using Theorem 4.8 and Lemma 4.6,∑

u,v∈Qn

‖x′u − x′v‖2 ≥
∑
u,v∈P

K22,Cr(u, v) &
∑
u,v∈P

ρ22,Cr(u, v) & |P|2 & |Qn|2.

This verifies that SDP(Qn/Γ) ≤ O(r) SDP(Qn).

Using this, we can recover the best-known integrality gap.

Corollary A.3. If Γ = 〈σ〉 is the group generated by cyclic shifts, then SDP(Qn/Γ) . SDP(Qn).

Proof. An argument similar to that of (6) shows that for n large enough and some r = O(1),
|Pr( 1

(4n)2 )| ≥ |Qn|(1− n−2).

The problem with averaging over orbits. Of course, one might hope that using techniques
more sophisticated than Theorem 2.1, it is possible to find nice groups Γ for which Φ(Qn/Γ) &
f(n)Φ(Qn), where f(n) � log n. In this case, one could hope to derive stronger integrality gaps.
Indeed, Bourgain and Kalai [?] exhibit primitive permutation groups Γ which yield such bounds.
Unfortunately, the following lemma poses a problem.

Lemma A.4. For any group Γ acting on [n], Φ(Qn/Γ) . Φ(Qn) log(n|Γ|).

Proof sketch. Let k ∈ N and define Fk : Qn → {0, 1} by Fk(u) = 1 if there exist an i ∈ [n] such
that ui, ui+1, . . . , ui+k < 0. Let

Sk = {u ∈ Qn : Fk(v) = 1 for some v ∈ Γu} . (17)

It is clear that Sk is Γ-invariant. Now, there exists a k ≤ log(n|Γ|) such that |Sk|/|Qn| ∈ [1/3, 2/3],
since for a randomly chosen u ∈ Qn, a fixed sequence will satisfy ui, ui+1, . . . , ui+k < 0 with
probability 2−k, and there are at most n|Γ| such sequences under consideration in (17).

By a standard analysis, a randomly chosen u ∈ Sk will, with high probability, have only
O(k) pivotal bits, implying that |E(u, S̄k)| is typically O(k) = O(log(n|Γ|)), which implies that
|E(Sk, S̄k)| ≤ O(log(n|Γ|))|Sk|, and yields Φ(Sk) ≤ O(log(n|Γ|))|Qn|−1 ≈ O(log(n|Γ|))Φ(Qn).

The preceding lemma is problematic, because in order for |Pr(1/n2)| to be almost everything,
one has to take r & log |Γ|

logn , This is because in a sum like

αt(u, v) =
∑
π∈Γ

|〈u, πv〉|2t

the terms not corresponding to π = id can generally only be expected to be of order (n−1/2)2t = n−t,
but there are possibly |Γ| of these terms, implying that we need t ≈ log |Γ|

logn in order for these terms
to have total magnitude o(1). In the next section, we discuss how different vector solutions can be
used with r = O(1) for a specific example with |Γ| ≈ 2n

Ω(1)
.
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B Larger orbits: Permutations of the rows

In this section, we discuss m×n sign matrices with m = poly(n), where Γ includes all permutations
of the rows, meaning that our previous SDP solutions would not be adequate (as the orbits are now
huge). Still, we give a (weak) SDP solution with SDPO(1)(Qmn/Γ) ≈ SDP(Qn). Unfortunately,
it is not difficult to see that Φ(Qmn/Γ) ≈ Φ(Qn) log n, meaning that we again achieve only an
Ω(log logN) integrality gap. It is possible that a hierarchical version of this construction could give
larger gaps.

B.1 The metric

For every m,n ∈ N, let Xm,n =
(

1√
n
{−1, 1}n

)m
⊆ Rmn be the space of sequences (A1, A2, . . . , Am)

with each Ai ∈ {−1√
n
, 1√

n
}n. The symmetric group Sm acts in a natural way on Xm,n: For π ∈ Sm,

we have π(A) = π(A1, . . . , Am) = (Aπ(1), . . . , Aπ(m)). Let Xm,n be the set of orbits of Xm,n under
the Sm action. We define

λt(A,B) =
1
m

max
π:[m]→[m]

m∑
i=1

|〈Ai, Bπ(i)〉|2t,

where the maximum is over all bijections π.

Lemma B.1. For any A,B,C ∈ Xm,n and any t ∈ N, we have

λt(A,B) ≥ λt(A,C) + λt(B,C)− 1.

Proof. Let π, π′ : [m] → [m] be such that λt(A,C) = 1
m

∑m
i=1 |〈Ai, Cπ(i)〉|2t and λt(B,C) =

1
m

∑m
i=1 |〈Bi, Cπ′(i)〉|2t. Then letting σ = (π′)−1 ◦ π, we have

λt(A,B) ≥ 1
m

m∑
i=1

|〈Ai, Bσ(i)〉|2t

≥ −1 +
1
m

m∑
i=1

|〈Ai, Cπ(i)〉|2t +
1
m

m∑
i=1

|〈Bσ(i), Cπ(i)〉|2t (18)

= −1 + λt(A,C) + λt(B,C).

Next we define, for every s, t ∈ N, the distance function ρs,t(A,B) = 1− (1
2 + 1

2λt(A,B))s.

Claim B.2. For every s, t ∈ N, ρs,t is a metric on Xm,n.

Proof. First, it’s clear that ρs,t(A,B) = ρs,t(πA,B) for all π ∈ Sm and A,B ∈ Xm,n. Also,
ρs,t(A,A) = 0 because λt(A,A) = 1.

Now, consider A,B,C ∈ Xm,n. The triangle inequality ρs,t(A,B) ≤ ρs,t(A,C) + ρs,t(B,C)
reduces to verifying

1 + (1
2 + 1

2λt(A,B))s ≥ (1
2 + 1

2λt(A,C))s + (1
2 + 1

2λt(B,C))s.

15



Write this as
1 + xs ≥ ys + zs. (19)

Then x, y, z ∈ [0, 1] since λt(A,B) ∈ [0, 1] for all A,B ∈ Xm,n. Combining this with the fact that
1 + x ≥ y + z from Lemma B.1, we conclude that (19) holds.

Finally, we analyze the behavior of ρs,t on “edges” ofXm,n and on random pairs. If A,A′ ∈ Xm,n,
we write A ∼ A′ if ‖A−A′‖22 = 4

n (i.e. the hamming distance between A and A′ is one).

Lemma B.3 (Edges). If A,A′ ∈ Xm,n with A ∼ A′, then ρs,t(A,A′) ≤ 2st
mn .

Proof. Observe that

λt(A,A′) ≥
1
m

m∑
i=1

|〈Ai, A′i〉|2t =
1
m

(
m− 1 +

(
1− 2

n

)2t
)
≥ 1− 4t

mn
.

hence ρs,t(A,A′) = 1− (1− 2t
mn)s ≤ 2st

mn .

Lemma B.4 (Random pairs). Suppose that A,B ∈ Xm,n are chosen independently and uniformly
at random. Then

Pr
[
λt(A,B) ≥ Ln−t

]
≤ 2me−

1
2
L1/t

.

In particular, for any s, t ∈ N, we have Pr[ρs,t(A,B) ≥ 1
4 ] ≥ Pr[λt(A,B) ≤ 1

2 ] ≥ 1
2 .

B.2 An equivalent negative-definite kernel

We now define, for any t ∈ N, two kernels. For A,B ∈ Xm,n, let

αt(A,B) =
1
m

m∑
i=1

m∑
j=1

|〈Ai, Bj〉|2t,

and
αt(A,B) =

αt(A,B)√
αt(A,A)αt(B,B)

.

Lemma B.5. For every t ∈ N, αt and αt are both positive semi-definite kernels on Xm,n.

Proof. Define maps f, f : Xm,n → Rnt by f(A) = 1√
m

∑m
i=1A

⊗2t
i and f(A) = f(A)/‖f(A)‖2. Then

〈f(A), f(B)〉 = αt(A,B) and 〈f(A), f(B)〉 = αt(A,B). Clearly f is invariant under the Sm action
on Xm,n.

For every s, t ∈ N, define a negative-definite kernel on Xm,n by

Ks,t(A,B) = 1−
(

1
2

+
αt(A,B)

2

)s
.

For r ∈ N, let
Nr(η) =

{
A ∈ Xm,n : |〈Ai, Aj〉|2r ≤

η

m
∀i 6= j ∈ [m]

}
be the set of elements in Xm,n with small self-correlation. In particular, A ∈ Nr(η) implies that
αr(A,A) ≤ 1 + η. Using Cauchy-Schwarz, we have αr(A,B) ≤

√
αr(A,A)αr(B,B), hence A,B ∈

Nr(η) implies αr(A,B) ≤ 1 + η as well.
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Lemma B.6 (Heavy matchings). Suppose that t ≥ 2r, η ≤ 1
16 , δ ∈ [0, 1], and A,B ∈ Nr(η). Then

αt(A,B) ≥ 1− δ implies that
λt(A,B) ≥ 1− (10δ + 2η)

Proof. Define αi = 1−
∑m

j=1 |〈Ai, Bj〉|2t and βi = maxj∈[m] |〈Ai, Bj〉|. Then,

1− αi ≤ β2t−2r
i

m∑
j=1

|〈Ai, Bj〉|2r ≤ β2(t−r)
i

√
‖Ai‖2 · αr(B,B) ≤ β2(t−r)

i (1 + η),

so we have

β2t
i ≥

(
1− αi
1 + η

) t
t−r
≥ 1− t

t− r
(αi + η) ≥ 1− 2(αi + η). (20)

Now suppose that

αt(A,B) =
1
m

m∑
i=1

(1− αi) ≥ 1− δ.

Let S = {i ∈ [m] : αi ≤ 1
8}. Clearly |S| ≥ (1 − 8δ)m since

∑m
i=1 αi ≤ δm. Define a mapping

π : S → [m] by π(i) = argmaxj∈[m]|〈Ai, Bj〉|2t.
We claim that π is injective. Observe that for i ∈ S, (20) implies that β2t

i ≥ 1− 2
(

1
8 + η

)
≥ 5

8 .
So if π(i) = π(j) for i 6= j ∈ S, then we have

|〈Ai, Aj〉|2t ≥ |〈Ai, Bπ(i)〉|2t + |〈Aj , Bπ(i)〉|2t − 1 ≥ 1
4
,

which contradicts the fact that for A ∈ Nr(η), we have |〈Ai, Aj〉|2t ≤ |〈Ai, Aj〉|2r ≤ η
m ≤

1
16 .

Since π is injective, it follows that

λt(A,B) ≥ 1
m

∑
i∈S

β2t
i ≥

1
m

∑
i∈S

(1− 2(αi + η)) ≥ |S|
m
− 2(δ + η) ≥ 1− (10δ + 2η).

Even though Ks,t may not be a metric, we show that it is always close to ρs,t.

Theorem B.7 (Bi-lipschitz equivalence). There exists a universal constant C ≥ 1 such that for
any t ≥ 2r, the distance functions Ks,t and ρs,t are C-bi-lipschitz equivalent when restricted to
Nr( 1

20mn).

Proof. If A = π(B) for some π ∈ Sm, then clearly λt(A,B) = αt(A,B) = 1, hence ρs,t(A,B) =
Ks,t(A,B) = 0. Let η = 1

20mn .
Consider A,B ∈ Nr(η) where A and B are in different equivalence classes of Xm,n. Then clearly

we have

λt(A,B) ≤ 1
m

(
m− 1 +

(
1− 2

n

)2t
)
≤ 1− 2

mn
. (21)

Now suppose that αt(A,B) = 1−δ for some δ ∈ [0, 1]. In that case, αt(A,B) ≥ αt(A,B) ≥ 1−δ,
so Lemma B.6 implies that λt(A,B) ≥ 1− (10δ+ 2η). From (21), we conclude that δ ≥ 1

6mn . This,
in turn, implies that η ≤ δ/3, which gives λt(A,B) ≥ 1− 11δ.
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Finally, we observe that

αt(A,B) ≥ (1− η)αt(A,B) ≥ (1− δ/3)αt(A,B) ≥ (1− δ/3)λt(A,B),

hence λt(A,B) ≤ (1 − δ)(1 + δ/3) ≤ 1 − 2δ
3 . We conclude that 1 − λt(A,B) and 1 − αt(A,B) are

within an O(1) factor of each other for all A,B ∈ Nr(η). This immediately implies that Ks,t(A,B)
and ρs,t(A,B) are within an O(1) multiplicative factor.

The final result of this section concerns how large one needs to choose r (and hence t) so that
Nr( 1

20mn) contains most of the points of Xm,n.

Lemma B.8. Let η = 1
20mn , and consider A ∈ Xm,n chosen uniformly at random. For any

τ = τ(m,n), there exists a choice of r ≈ logm
logn−log log m

τ
for which

Pr [A /∈ Nr(η)] ≤ τ.

Proof. Let Ai, Aj ∈ {−1√
n
, 1√

n
}n be chosen independently at random, then

Pr [A /∈ Nr(η)] ≤ m2 Pr

[
|〈Ai, Aj〉| ≥

(
1

20m2n

)1/2r
]
≤ 2m2 exp

(
−n

2(20m2n)1/r

)
.

Simplifying yields the desired conclusion.

The point is that we can choose any m = poly(n) and τ = 2−n
0.1

, and we still only need
r = O(1).

C PSD flows and triangle inequalities

In this section, we discuss the question of whether SDPO(1)(G) ≈ SDP(G) for every graph G, i.e.
whether the weak triangle inequalities can always be converted to strong triangle inequalities with
only an O(1) loss. This is most nicely stated in the setting of the SDP dual.

Let G = (V,E) be a finite, undirected graph, and for every pair u, v ∈ V , let Puv be the set of
all paths between u and v in G. Let P =

⋃
u,v∈V Puv. A flow in G is a mapping F : P → R≥0. We

define, for every vertex (u, v) ∈ E, the congestion on (u, v) as

CF (u, v) =
∑

p∈P:(u,v)∈p

F (p).

For any u, v ∈ V , let F [u, v] =
∑

p∈Puv F (p) be the amount of flow sent between u and v.
The standard “maximum concurrent flow” problem is simply

mcf(G) = maximize
{
D : ∀u, v, F [u, v] ≥ D and ∀(u, v) ∈ E,CF (u, v) ≤ 1.

}
If we define the symmetric matrix

Au,v = F [u, v]−D + 1{(u,v)∈E} − CF (u, v),
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then certainly every feasible flow of value D satisfies Au,v ≥ 0 for all u, v ∈ V . In fact, we can
combine the two types of flow constraints (demand/congestion) together, and get the same thing:

Exercise: mcf(G) = max{D : Au,v ≥ 0 ∀u, v}

Now, the dual of the Sparsest Cut SDP is precisely the same thing, but with a global constraint
on A, instead of having a constraint per entry:

SDP(G) = max{D : L(A) � 0}.

Here, L(A) denotes the Laplacian of A, i.e.

L(A)i,j =

{∑
k 6=iAi,k i = j

−Ai,j otherwise.

and we write L(A) � 0 to denote that L(A) is positive semi-definite.
Now, if we write, for some κ ≥ 1,

A(κ)
u,v = F [u, v]−D + κ · 1{(u,v)∈E} − CF (u, v),

then clearly
max{D : A(κ)

u,v ≥ 0∀u, v} ≥ max{D : Au,v ≥ 0 ∀u, v}

because we have bumped up the edge capacities. On the other hand, given an A(κ)-feasible flow of
value D, we can always get an actual feasible flow with value D/κ by simply scaling down the flow
by factor 1/κ, i.e.

max{D : A(κ)
u,v ≥ 0 ∀u, v} = κ ·max{D : Au,v ≥ 0 ∀u, v}.

Question 1. Is the same kind of thing true for “PSD-flows”? In other words, are

max{D : L(A) � 0} and max{D : L(A(κ)) � 0}

related by a factor depending only on κ?

If this question has a positive answer, then it makes integrality gaps for the Sparsest Cut SDP
much easier to understand, because SDP duality shows that SDP(G) = max{D : L(A) � 0} while
SDPκ(G) = max{D : L(A(κ)) � 0}.

The answer to this question is affirmative if we can decouple the L(A) � 0 constraint into two
constraints, i.e. let Xu,v = F [u, v]−D for u 6= v and let Yu,v = 1(u,v)∈E − CF (u, v).

Question 2. Can we relate (e.g. within constant factors) max{D : L(A) � 0} to max{D : L(X) �
0 and L(Y ) � 0} as we can for normal flows? It is easy to check that this would give an affirmative
answer to Question 1.
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