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Fall 2009



Merging Techniques for Combinatorial Optimization: Spectral Graph
Theory and Semidefinite Programming

Copyright Fall 2009
by

Alexandra Kolla



1

Abstract

Merging Techniques for Combinatorial Optimization: Spectral Graph Theory and
Semidefinite Programming

by

Alexandra Kolla
Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Umesh Vazirani, Chair

In this thesis, we study three problems related to expanders, whose analysis involves un-
derstanding the intimate connection between expanders, spectra and semidefinite program-
ming. Our first result is related to Khot’s Unique Games conjecture (UGC) [Kho], whose
validity is one of the most central open problems in computational complexity theory. We
show that UGC is false on expander graphs. This result, in particular, rules out a natural
way of proving hardness of approximation for SPARSEST CUT. Our second result is in
the area of graph sparsification. We say that a graph H is a sparsifier for a graph G if the
respective graph Laplacians of the two graphs satisfy xTLHx ≈ xTLGx for all vectors x.
Given a union of two graphs G + W , we show how to choose a sparse subgraph W ′ ⊆ W so
that G+W ′ is a good sparsifier for G+W . We apply the result to optimizing the algebraic
connectivity of a graph by adding very few edges. We also show how to use this result in
order to create optimal ultrasparsifiers for every graph, which can be used as good graph-
theoretic preconditioners for symmetric, positive semidefinite, diagonally dominant linear
systems. Lastly, we study the integrality gap of the well known Sparsest Cut semidefinite
program. We present a simple construction and analysis of an Ω(log log N) integrality gap
for Sparsest Cut while our gap instance, vector solution, and analysis are somewhat simpler
and more intuitive than those which appear in the literature.

Our techniques use tools both from the area of semidefinite programming and spectral
graph theory. This is not surprising since, when delving into the beautiful theory under-
lying spectra and SDPs, one finds that they are deeply connected in more ways than one.
Semidefinite programs are nothing but linear programs with variables representing entries
of a matrix, together with eigenvalue bounds for that matrix and could, therefore capture
the spectral expansion of a graph. Similarly, most of eigenvalue optimization problems can
be cast as SDPs, which leads to developing semidefinite programming based algorithms
for a plethora of other important graph problems. In this thesis we further explore the
connections between expansion, spectra and SDPs by applying them to solving these three
problems described above.
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Chapter 1

Introduction

Expander graphs are a surprising powerful tool that has found a wide range of
applications in computer science including solving problems in communication and con-
struction of error correcting codes as well as proving results in number theory and com-
putational complexity. Informally, expanders are graphs in which every subset of vertices
expands quickly, in the sense that it is connected to many vertices in the set of complemen-
tary vertices. In this thesis, we study three problems related to expanders, whose analysis
involves understanding the intimate connection between expanders, spectra and semidefinite
programming.

Before introducing these connections, it is useful to consider the closely related
notion of a sparse cut in a graph. Formally, if we let (S, S) denote a cut, i.e. a partition
of the graph in two disjoint pieces, then the sparsest cut h(G) of a graph G is defined as
follows:

h(G) = min
S:|S|≤V/2

E(S, S)
|S| (1.1)

Such sparse graph partitions are central objects of study in the theory of Markov
chains, geometric embeddings and are a natural algorithmic primitive in numerous settings,
including clustering, divide and conquer approaches, PRAM emulation, VLSI layout, and
packet routing in distributed networks.

Since the problem of finding the sparsest cut, i.e. the cut that minimizes the
edge expansion, is NP-hard, much of recent work has focused on approximating h(G). One
way to approximate the sparsest cut is using the closely related notion that of algebraic
connectivity of a graph, that is, the second smallest eigenvalue of the graph Laplacian. The
intrinsic relation between the algebraic connectivity of a graph and the edge expansion can
be summarized in the Alon-Millman-Cheeger inequality [Che70], [AM85a], [Alo86]:

Theorem 1 ( [Che70], [AM85a], [Alo86]) Let dmax be the maximum degree of a node in
G. Then

λ2 ≤ h(G) ≤
√

2dmaxλ2 (1.2)

Revisiting the notion of expanders we can now define an expander graph to be a
graph with no sparse cut, or equivalently, with large algebraic connectivity.
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Notably, the best approximation algorithms for sparsest cut use Semidefinite Pro-
gramming (SDP). This is not surprising since semidefinite programs are nothing but linear
programs with variables representing entries of a matrix, together with eigenvalue bounds
for that matrix and could, therefore capture the spectral expansion of a graph. Similarly,
most of eigenvalue optimization problems can be cast as SDPs, which leads to developing
semidefinite programming based algorithms for a plethora of other important graph prob-
lems. In this thesis we further explore the connections between expansion, spectra and
SDPs and apply them to several more sophisticated problems related to expander graphs.

The first problem (chapter 3), is related to investigating the validity of Khot’s
Unique Games conjecture (UGC) [Kho], which asserts that for a certain constraint satis-
faction problem, it is NP-hard to decide whether there is a labeling that satisfies almost
all the constraints or, for every labeling, the fraction of the constraints satisfied is very
small. Since its origin, the UGC has been applied with remarkable success to prove tight
hardness of approximation results for several important NP-hard problems such as Vertex
Cover [KR], Maximum Cut [KKMO].

An interesting class of Unique Games are games where the underlying graph is
an expander. Some researchers conjectured that these were good candidates for the hardest
instances of UGC. There is also another important reason for studying this special class of
Unique Games: Despite the remarkable progress in proving hardness of approximation
results assuming the conjecture, the state of the art for innaproximability of the (uniform)
Sparsest Cut (Sparsest Cut) problem is very unsatisfying . In fact, it seems unlikely that
there is a reduction from Unique Games to Sparsest Cut, unless one assumes that the
starting Unique Games instance has some expansion property.

We show that UGC for expanders is false. We present two distinct algorithms that find
good assignments for instances of Unique Games when the underlying graph has some
significant expansion. The first algorithm is based on a spectral partitioning approach and
performs well for arbitrary Γ-max-lin constraints on the underlying Unique Games graph.
The second algorithm is based on semidefinite programming and covers the case where the
constraints are arbitrary permutations. We note that even though there is a reduction from
the case where the Unique Games instance has arbitrary constraints to the case where the
constraints are Γ-max-lin [KKMO], it does not preserve the expansion of the underlying
graphs. Therefore the results of the second algorithm are not implied nor can be obtained
by the first.

Chapter 4 of the thesis is motivated by the problem of deciding which k edges to add
to a given graph G on order to maximize its expansion. In is not hard to use SDP to find
a fractional graph W of total weight k such that G + W maximizes the expansion. In
order to find the optimum k edges we need, however, to round the SDP solution. To do
so, we present a novel method of sparsification. Given a union of two graphs G + W , we
investigate the question of choosing a sparse subgraph W ′ ⊆ W so that G+W ′ approximates
G + W . The notion of approximation we use is that the two graphs are spectrally close
and has been used in the literature by several authors [ST], [SS], [BSS]. We prove that for
every two graphs G, W there exists a subgraph W ′ ⊆ W such that the number of edges
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in W ′ as well as the quality of approximation of the spectrum of G + W depend on the
relative spectrum of W with respect to G. We apply the result to optimizing the algebraic
connectivity of a graph by adding very few edges. We also show how to use this result in
order to create optimal ultrasparsifiers for every graph, which can be used as good graph-
theoretic preconditioners for symmetric, positive semidefinite, diagonally dominant linear
systems.

In chapter 5, we study the integrality gap of the well known Sparsest Cut semidefinite
program. The best approximation algorithm known for that problem is an SDP based
algorithm and achieves an approximation guarantee of O(

√
log n) [ARV04] which is believed

to be tight. And yet, the best lowerbound known for that SDP is Ω(log log n) and was proved
by Devanur, Khot, Saket, and Vishnoi [STOC 2006], following an integrality gap for non-
uniform demands due to Khot and Vishnoi [FOCS 2005]. Their constructions involve a
complicated SDP solution and analysis. In this chapter, we present a simple construction
and analysis of an Ω(log log N) integrality gap for Sparsest Cut while our gap instance,
vector solution, and analysis are somewhat simpler and more intuitive. Furthermore, our
approach is rather general, and provides a variety of different gap examples derived from
quotients of the hypercube. It also illustrates why the lower bound is stuck at Ω(log log N),
and why new ideas are needed in order to derive stronger examples.

In the rest of the introduction we give more detailed overview of the three main chapters
in this thesis.

1.1 Algorithms for Expanding Instances of Unique Games

Unique Games is a constraint satisfaction problem where one is given a constraint
graph G = (V, E), a label set [k] and for each edge e = (u, v), a bijective mapping πuv :
[k] 7→ [k]. The goal is to assign to each vertex in G a label from [k] so as to maximize the
fraction of the constraints that are “satisfied,” where an edge e = (u, v) is said to be satisfied
by an assignment if u is assigned a label i and v is assigned a label j such that πuv(i) = j.
The value of a labeling Λ: V → [k] is the fraction of the constraints satisfied by it and is
denoted by val(Λ). For a Unique Games instance U , we denote by opt(U) the maximum
value of val(Λ) over all labelings. This optimization problem was first considered by Cai,
Condon, and Lipton [yCCL90]. The Unique Games Conjecture (UGC) of Khot [Kho] asserts
that for such a constraint satisfaction problem, for arbitrarily small constants ε, δ > 0, it is
NP-hard to decide whether there is a labeling that satisfies 1− ε fraction of the constraints
or, for every labeling, the fraction of the constraints satisfied is at most δ as long as the size
of the label set, k, is allowed to grow as a function of ε and δ.

Since its origin, the UGC has been successfully used to prove (often optimal) hard-
ness of approximation results for several important NP-hard problems such as MIN-2SAT-
DELETION [Kho], Vertex Cover [KR], Maximum Cut [KKMO], Graph Color-
ing [DMR], and non-uniform Sparsest Cut [CKK+, KV]. In addition, in recent years,
Unique Games Conjecture(UGC) has also proved to be intimately connected to the limi-
tations of Semidefinite Programming. Making this connection precise, [Rag08] shows that
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if UGC is true, then for every constraint satisfaction problem(CSP) the best approxima-
tion ratio is given by a certain simple SDP. However, one fundamental problem that has
resisted attempts to prove inapproximability results, even assuming UGC, is the (uniform)
Sparsest Cut problem. This problem has a O(

√
log n) approximation algorithm by Arora,

Rao, and Vazirani [ARV04], but no hardness result beyond NP-hardness is known (recently,
in [AMS07], a PTAS is ruled out under a complexity assumption stronger than P 6= NP). In
fact, it seems unlikely that there is a reduction from Unique Games to Sparsest Cut,
unless one assumes that the starting Unique Games instance has some expansion property.
This is because if the Unique Games instance itself has a sparse cut, then the instance of
Sparsest Cut produced by such a reduction also has a sparse cut (this is certainly the
case for known reductions, i.e. [CKK+,KV]), irrespective of whether the Unique Games
instance is a YES or a NO instance. This motivates the following question: is Unique
Games problem hard even with the promise that the constraint graph is an expander?
A priori, this could be true even with a very strong notion of expansion (as some of the
authors of this paper speculated), leading to a superconstant hardness result for Sparsest
Cut and related problems like Minimum Linear Arrangement.

1.1.1 Our Results

The main result of this chapter is that the Unique Games problem is actually
easy when the constraint graph is even a relatively weak expander. The main notion of
expansion that we consider is when the algebraic connectivity of a graph G, denoted by
λ := λ2(G), is bounded away from 0. As we noted earlier, the size of balanced cuts (relative
to the total number of edges) in a graph is also a useful notion of expansion and the results
in this paper can be extended to work in that setting. We present two approximation
algorithms to find good assignments when they exist, for expanding instances of Unique
Games.

In the first part of the chapter, we study the case of random unique games gen-
erated by picking a random regular graph of degree d (or a random Gn,p graph of average
degree d) and picking a random permutation for each edge. We show that with high prob-
ability over the choice of instances, the value of the SDP from [FL92] and [Kho] is at most
δ for d = Ω(1/δ4 + 1/ε4).

Using techniques from the above analysis, we also study the problem of recovering
planted solutions for random unique games and finding good solutions when the given
Unique game is a Γ-max-lin expanding instance. Specifically, we start with studying the
model where a random instance consistent with a given solution is chosen to start with, and
an adversary then perturbs ε fraction of the constraints. Thus, the given instance has one
planted solution with value 1− ε. We give an algorithm which recovers w.h.p. a solution of
value at least 1−O(ε) even when the perturbations are adversarial. The result for Γ-max-lin
expanding constraint graphs follows easily from this analysis.

To obtain both the above results, we analyze the dual of the SDP. We reduce the
problem of estimating the value of the SDP to estimating the eigenvalues for an associated
matrix M . Since most known eigenvalue analyses are for matrices with independent entries,
which does not happen to be the case with M , we adapt the analyses from [BS87] and
[AKV02] to our purposes. The planted and expanding Γ-max-lin cases are dealt with by
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analyzing the eigenvectors of this matrix.
In the second part of the paper we show the following theorem.

Theorem 2 There is a polynomial time algorithm for Unique Games that, given ε > 0,
distinguishes between the following two cases:

• YES case: There is a labeling which satisfies at least 1− ε fraction of the constraints.

• NO case: Every labeling satisfies less than 1−O( ε
λ log(λ

ε )) fraction of the constraints.

A consequence of the result is that when the Unique Games instance is (1− ε)-satisfiable
and λ À ε, the algorithm finds a labeling to the Unique Games instance that satisfies
99% of the constraints. An important feature of the algorithm is that its performance does
not depend on the number of labels k.

1.1.2 Comparison to previous work

Most of the algorithms for Unique Games (which can be viewed as attempts to
disprove the UGC) are based on the SDP relaxation proposed by Feige and Lovász [FL92].
Their paper showed that if the Unique Games instance is unsatisfiable, then the value
of the SDP relaxation is bounded away from 1, though they did not give quantitative
bounds. Khot [Kho] gave a SDP-rounding algorithm to find a labeling that satisfies 1 −
O(k2ε1/5 log(1/ε)) fraction of the constraints when there exists a labeling that satisfies
1 − ε fraction of the constraints. The SDP’s analysis was then revisited by many papers.
On an (1− ε)-satisfiable instance, these papers obtain a labeling that satisfies at least 1−
f(ε, n, k) fraction of the constraints where f(ε, n, k) is 3

√
ε log n in Trevisan [Tre],

√
ε log k in

Charikar, Makarychev, and Makarychev [CMMa], ε
√

log n log k in Chlamtac, Makarychev,
and Makarychev [CMMb], and ε log n via an LP based approach in Gupta and Talwar [GT].
Trevisan [Tre] also gave a combinatorial algorithm that works well on expanders. On an
(1 − ε)-satisfiable instance, he showed how to obtain a labeling satisfying 1 − ε log n log 1

λ
fraction of the constraints. All these results require ε to go to 0 as either n or k go to infinity
in order to maintain their applicability1. Our main result is the first of its kind where under
an additional promise of a natural graph property, namely expansion, the performance of
the algorithm is independent of k and n. Furthermore, our analysis steps away from the
edge-by-edge analysis of previous papers in favor of a more global analysis of correlations,
which may be useful for other problems. We also provide an integrality gap for this SDP to
show that, quantitatively, our main result is tight up to log factors.

We note that if we impose a certain structure on our constraints, namely if they are
of the form ΓMAX2LIN, the latest results continue to hold when λ is replaced by stronger
relaxations for the expansion of G, similar in spirit to the relaxations obtained by SDP
hierarchies [LS91,Las01,Lau03]. In particular, we show that λ can be replaced by the value
of such a relaxation for expansion of G after a constant number of rounds.

1On the other hand, the UGC allows k to grow arbitrarily as a function of ε, and therefore, all known
algorithms fall short of disproving UGC.
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Application to parallel repetition Since our main result shows an upper bound on the
integrality gap for the standard SDP, the analysis of Feige and Lovász [FL92] allows us to
prove (see Section 3.5) a parallel repetition theorem for unique games with expansion. We
show that the r-round parallel repetition value of a Unique Games instance with value at
most 1−ε is at most (1−Ω(ε ·λ/ log 1

ε ))r. In addition to providing an alternate proof, when
λ À ε2 log(1/ε), this is better than the general bound for nonunique games, where the best
bound is (1−Ω(ε3/ log k))r by Holenstein [Hol], improving upon Raz’s Theorem [Raz98].
We note that recently, Safra and Schwartz [SS07] also showed a parallel repetition theorem
for games with expansion, and their result works even for general games. Also, Rao [Rao]
has proved a better parallel repetition theorem for, so called, projection games, which are
more general than unique games. His result does not assume any expansion of the game
graph.

1.2 Subgraph Sparsifiers and Applications

Graph Sparsifiers and Ultrasparsifiers. A sparsifier of a graph G = (V, E,w) is a
d-sparse graph H that is similar to G in some useful way. (We say that a graph is d-sparse
if it has at most dn edges). The purpose that H serves is that it can be used as a proxy
for G in computations without introducing too much error and at the same time achieve
significantly faster running time. Many notions of ”similarity” have been considered. We
will mainly be interested in the spectral notion of similarity introduced by Spielman and
Teng [ST], [ST08]: we say that H is a κ-approximation of G if for all x ∈ RV ,

xTLGx ≤ xTLHx ≤ κxTLGx (1.3)

where LG and LH are the Laplacian matrices of G and H.
Equivalently, for such H ⊆ G we will use the notation H ¹ G ¹ κH to imply that

equation 4.1 holds.
In the case where G is the complete graph, excellent spectral sparsifiers are supplied

by Ramanujan Graphs [LPS88], [Mar88]. These are d-regular graphs H all of whose non-
zero Laplacian eigenvalues lie between d − 2

√
d− 1 and d + 2

√
d− 1. Thus, if we take a

Ramanujan graph on n vertices and multiply the weight of every edge by n/(d− 2
√

d− 1),
we obtain a graph that d+2

√
d−1

d−2
√

d−1
-approximates the complete graphs

In [BSS] the authors showed that every graph can be approximated at least this
well by a graph with only twice as many edges. Namely, they showed that

Theorem 3 For every d > 1, every undirected graph G = (V, E, w) on n vertices contains
a weighted subgraph H = (V, F, w̃) with dd(n − 1)e edges (i.e. average degree at most 2d)
that satisfies:

xTLGx ≤ xTLHx ≤ d + 2
√

d− 1
d− 2

√
d− 1

· xTLGx

A graph is k-ultra-sparse if it has at most n-1+k edges. We note that a spanning
tree is 0-ultra-sparse. An ultra-sparsifier of a graph G = (V,E, w) is a d-sparse graph
U ⊆ G that approximates G in some useful way. We use the notion of ultrasparsifiers as it
appears in [ST]. Namely, U is a (κ, k)- ultrasparsifier of G if it has the following properties
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• U ¹ G ¹ κ · U

• U has less than n− 1 + k edges.

1.2.1 Our Results

In this chapter we consider a variation of the spectral sparsification problem where
we are required to keep a subgraph of the original graph. Formally, given a union of two
weighted graphs G and W and an integer k, we are asked to find a k-edge weighted graph
Wk such that G+Wk is a good spectral sparsifer of G+W . We will refer to this problem as
the subgraph (spectral) sparsification. We present a nontrivial condition on G and W such
that a good sparsifier exists and give a polynomial time algorithm to find the sparsifer.

As a significant application of our technique, we show that for each positive integer
k, every n-vertex weighted graph has an (n − 1 + k)-edge spectral sparsifier with relative
condition number at most n

k log n Õ(log log n) where Õ() hides lower order terms. Our
bound is within a factor of Õ(log log n) from optimal. This nearly settles a question left
open by Spielman and Teng about ultrasparsifiers, which is a key component in their nearly
linear-time algorithms for solving diagonally dominant symmetric linear systems.

We also present another application of our technique to spectral optimization in
which the goal is to maximize the algebraic connectivity of a graph (e.g. turn it into an
expander) with a limited number of edges.

Ultrasparsifiers and Their Use in Solving Systems of Linear Equations. In recent
years, ultrasparsifiers have been frequently used as provably good graph theoretic precondi-
tioners that enable the fast solution of linear systems. Given an n× n symmetric, positive
semidefinite, diagonally dominant matrix A with m non-zero entries, and an n−dimensional
vector b, a linear system solver is required to produce a vector x̃ within relative distance ε
of the solution to Ax = b. Iterative methods for solving such systems consist of successively
computing better approximations of x. These methods are improved by preconditioning,
which consists of solving B−1Ax = B−1b for a preconditioner B that is carefully chosen.

Vaidya first discovered [Vai90] that for symmetric, positive semidefinite, diagonally
dominant matrices one could use combinatorial techniques to construct provably good ma-
trices (ultrasparsifiers) B for preconditioning. Since the running time of the linear system
solver directly depends on the parameters k and N above, there has been a line of work by
several authors [GMZ95] [Gre97], [Jos97], [ST03], [ST] that aims in constructing ultraspar-
sifiers with the fewest number of edges possible. In [ST], the authors showed the existence
of ((n/k) logO(1) n, k2O(

√
log n log log n)) ultrasparsifiers for every graph G, thus exhibiting a

linear system solver that runs in time

m logO(1)m + O(m log(1/ε)) + n2O(
√

log n log log n) log(1/ε)

In [ST] the authors also conjecture the existence of ultrasparsifiers with parameters
(n

k log n, k).
In this chapter we also show how to use our result to obtain (n

k log nÕ(log log n), k)-
ultrasparsifiers for any graph G. Here we use the notation Õ to hide lower-order terms. We
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note that up to those lower order terms, these ultrasparsifiers are optimal in the sense that
for any constant degree expander graph G, we cannot construct ultrasparsifiers with better
parameters.

Optimizing Algebraic Connectivity by Adding few Edges . In this chapter, we
present an approximation algorithm for the following problem: given a graph G = (V,Ebase),
a set of candidate edges Ecand, and a parameter k, add at most k candidate edges to G so
as to maximize its algebraic connectivity, that is, find a subset E ⊂ Ecand that maximizes
λ2(LG+E). The problem was introduced by Ghosh and Boyd [BG06], who presented a
heuristic for it. It is known that the problem is NP-hard [MA08]. But prior to this work,
no approximation algorithm was known for it.

We use two upper bounds for the cost of the combinatorial solution in order to
prove an approximation guarantee: one upper bound is the SDP value, λSDP , and the other
is λk+2(LG) (see Lemma 72). Note that neither of these two bounds are good approximations
for the value of the optimum solution by themselves (for instance, if G consists of n isolated
vertices, (V, Ecand) is an expander, k < n, then the value of the combinatorial solution is
0 but λSDP ∼ k/n), but their combinations lead to a good upper bound for the optimum
solution λOPT .

1.3 Integrality Gaps for Sparsest Cut

As pointed out earlier, the notion of graph expansion plays a central role in the
modern theory of computation. Moreover, given an input graph G = (V, E), the compu-
tational problem of computing the least expanding set in G, or the extent to which G is
an expander, is a fundamental one in algorithm design. If we let E(S, S) denote the set of
edges between S ⊆ V and its complement and define, similarly to the edge expansion h(G),

Φ(G) = min
{ |E(S, S)|

|S||S| : S ⊆ V

}
,

then calculating Φ(G) (and the set which achieves the minimum) if the well-known uniform
Sparsest Cut problem. Since the problem is NP-hard, much recent work has focused on
approximating Φ(G).

The first such algorithm, due to Leighton and Rao [LR99], achieved an O(log N)-
approximation, where N = |V |, and was based on a linear programming relaxation that
computes an all-pairs multi-commodity flow in G. Later, Linial, London, and Rabinovich
[LLR95], and Aumann and Rabani [AR98], found a connection between rounding this linear
programming (and its generalizations) and the problem of embedding finite metric spaces
into L1.

Around this time, a natural semi-deifnite programming (SDP) relaxation was pro-
posed. This relaxation can be written succinctly as

SDP(G) = min

{ ∑
uv∈E ‖xu − xv‖2

∑
u,v∈V ‖xu − xv‖2

: ‖xu − xv‖2 ≤ ‖xu − xw‖2 + ‖xw − xv‖2 ∀u, v, w ∈ V

}
,
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where the minimum ranges over all vectors {xu}u∈V ⊆ RN−1. The latter constraints are
referred to alternatively as the “negative-type inequalities,” the “`2

2 inequalities,” or the
“squared triangle inequalities,” and the geometric constraints they place on the solution
are still poorly understood.

In fact, Goemans and Linial [Goe97,Lin02] conjectured that the integrality gap of
this relaxation is only O(1) (in fact, they conjectured that a more general “non-uniform”
version of the problem satisfied this bound). In a seminal work of Arora, Rao, and Vazirani
[ARV04], it was shown that the integrality gap is at most O(

√
log N), but the question

of lower bounds on the integrality gap remained open, largely because of the difficulty of
producing interesting systems of vectors that satisfied the `2

2 inequalities.
Finally, in a remarkable paper, Khot and Vishnoi [KV] disproved the non-uniform

Goemans-Linial conjecture using a connection with the Unique Games conjecture [Kho]. A
year later, Devanur, Khot, Saket, and Vishnoi [DKSV] showed how one can obtain a gap
for the uniform version defined above. Their quantitative lower bound is Ω(log log N), and
the exponential gap between this and the O(

√
log N) upper bound still remains.

Problematically, both the constructions of [KV] and [DKSV] are shrouded in mys-
tery. The construction and analysis have often been referred to as “difficult,” “impene-
trable,” “extremely technical,” and “magic” (the last description coming from the authors
themselves). The goal of the present work is to present a simple, self-contained construction
and analysis of an Ω(log log N) integrality gap. Our inputs instances, vector solutions, and
analysis are all simpler and more intuitive than their counterparts in [KV] and [DKSV].

It is difficult to overestimate the importance of the Sparsest Cut problem, the
preceding SDP, and its place in the larger theory of approximation algorithms. We mention,
first of all, that the algorithm and analysis of [ARV04] drove a huge wave of new results
in approximation algorithms. Furthermore, the Sparsest Cut problem and the analysis of
this SDP were some of the primary driving forces in the field of metric embeddings, and
led to a number of beautiful results and connections. The SDP combines the flow-based
constraints of the Leighton-Rao LP, together with the second (Laplacian) eigenvalue bound
used in spectral partitioning (see [ARV04]), and in this sense represents a new frontier in
algorithm design.

Finally, we mention that the uniform Sparsest Cut problem is still very poorly
understood from the standpoint of approximation algorithms. It is known to be hard to
approximate within 1 + ε0, for some small constant ε0 > 0, unless NP has subexponential-
time algorithms [AMS], but no better lower bound is known, even assuming the unique
games conjecture. On the other hand, as we previously mentioned, the best upper bound
is O(

√
log N).

1.3.1 Our Results

We present simple construction and analysis of an Ω(log log N) integrality gap for
Sparsest Cut SDP. Our gap instances are simply quotients of the standard hypercube—
which we will represent by Qn = {−1√

n
, 1√

n
}n—under some action by permutations of the

coordinates. The sparsity of cuts in these graphs was studied by Khot and Naor [KN06],
and those authors also suggested them as a possible source for integrality gaps.
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For instance, consider the cyclic shift operator σ(x1, x2, . . . , xn) = (x2, . . . , xn, x1),
and define the quotient metric

d(u, v) = min
{‖u− σiv‖1 : i = 0, 1, . . . , n− 1

}
,

which is clearly σ-invariant, i.e. d(u, v) = d(σu, v) = d(u, σv), and hence actually a metric
on the orbits of Qn under the action of σ. It is straightforward to verify that d satisfies the
triangle inequality.

Our approach is simply to define vectors {xu}u∈Qn such that ‖xu− xv‖2 ≈ d(u, v)
holds for all u, v ∈ P, where P is a certain “pseudorandom” subset of Qn, and |Qn \ P| =
o(|Qn|). We use this connection (and the fact that d is a metric) to prove the triangle
inequalities for {xu}u∈P . We then map all the points of Qn\P to some fixed xu0 for u0 ∈ P.
Being such a small fraction of points, their contribution to the SDP is inconsequential.

For cyclic shifts, our vector solution is essentially the following,

xu =
1√
n

n−1∑

i=0

(σiu)⊗t, (1.4)

for some small t = O(1). In general, we simply average over the action of a group, and take
small tensor powers.

Now, our P is essentially the set of points whose orbits are not too self-correlated,
e.g. points u ∈ Qn with 〈u, σiu〉 ≤ n−1/3, say, for every i ∈ {1, 2, . . . , n − 1}. To show
that d(u, v) ≈ ‖xu − xv‖2 for u, v ∈ P, we will assume that ‖xu‖ = 1 for every u ∈ P
(this is almost true, by virtue of the definition of P). In this case, it suffices to prove that
1− 〈xu, xv〉 ≈ 1− λ(u, v), where

λ(u, v) = max
{〈u, σiv〉 : i = 0, 1, . . . , n− 1

}

is the associated “quotient inner product.”

To see that this holds, we write

〈xu, xv〉 =
n−1∑

i=0

〈u, σiv〉t. (1.5)

Now, if λ(u, v) ≥ 1−δ, then 〈xu, xv〉 ≥ (1−δ)t ≥ 1−δt. On the other hand, if 〈xu, xv〉 ≥ 1−δ,
we need to find a single i ∈ [n] for which 〈u, σiv〉 ≈ 〈xu, xv〉. Since we are taking tth powers
in (1.5), any small inner products 〈u, σjv〉 are dampened out. But if there were two distinct
indices i, j for which 〈u, σiv〉 and 〈u, σjv〉 were both moderately large, then 〈u, σi−ju〉 would
also be large, which doesn’t happen because u ∈ P. Hence 〈xu, xv〉 can only be close to 1 if
the contribution comes almost entirely from one shift. This matching property is precisely
what yields the triangle inequalities.
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Chapter 2

Spectral Graph Theory and SDP
Basics

In this chapter we give the essential definitions and properties of graph spectra
and convex optimization, with special emphasis to semidefinite programming. We start
with a brief overview of some basic results from Linear Algebra and Matrix Theory. In
section 2.2 we present some basic facts of spectral graph theory. We first define the ad-
jacency matrix of a graph and examine its eigenvalues and eigenvectors. Then, we focus
on the graph Laplacian and the spectrum of the Laplacian matrix with special emphasis
on the second smallest Laplacian eigenvalue and its relation to several graph invariants,
including connectivity and expanding properties. As a main source of reference regarding
the Laplacian spectrum, the reader is referred to [Moh91].

Next, in section 2.3, we start with some preliminary definitions and facts on convex func-
tions and convex optimization. We proceed in 2.3.1, to introduce a special case of convex
optimization, namely Semidefinite programming , which will be the focus of the rest of the
section. We present several of the main properties of semidefinite programs [Lov91], [BV04]
and show that such programs arise in a variety of ways: as certain geometric extremal
problems, as relaxations (stronger than linear relaxations) of combinatorial optimization
problems, in optimizing eigenvalue bounds in graph theory to mention some of them. We
conclude by giving examples of how semidefinite programs are used in the design of approx-
imation algorithms for NP-hard optimization problems.

2.1 Linear Algebra Principles

Spectra of Matrices. We start with a review of eigenvalues and eigenvectors of matrices,
with special focus on symmetric matrices.
Let A be an n × n real matrix. An eigenvector of A is a vector u such that Au is parallel
to u. In other words, Au = λu for some real or complex number λ. the number λ is called
the eigenvalue of A belonging to eigenvector u. Note that λ is an eigenvalue iff the matrix
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A− λI is singular, equivalently, iff

det(A− λI) = 0 (2.1)

This is an algebraic equation of degree n for λ and has therefore n roots with
multiplicity.

Definition 4 The trace of a square matrix A is defined as

tr(A) =
n∑

i=1

Aii

It is a well-known fact that the trace of A is the sum of the eigenvalues of A, each
taken with the same multiplicity as it accurs among the roots of equation 2.1.
If the matrix A is symmetric, then its eigenvalues are real. Also, there is an orthonormal
basis u1, · · · , un of the space consisting of eigenvectors of A, so that the corresponding
eigenvalues λ1, · · · , λn are precisely the roots of 2.1. Then A can be written as

A =
n∑

i=1

λiuiui
T

Equivalently, every symmetric matrix can be written as UT AU where U is an
orthogonal matrix and D is a diagonal matrix with diagonal entries the eigenvalues of A.

We also state the following well-known result.

Theorem 5 (Min–max characterization of eigenvalues of a symmetric matrix A) : Let A
be an n × n hermitian matrix. Let λ1 ≤ · · · ≤ λn be its eigenvalues listed in increasing
order. Then

λj(A) = min
Sj

max
x∈Sj ,‖x‖=1

xT Ax

Where Sj is a j dimensional subspace.
Alternatively, if λ1 ≥ · · · ≥ λn are listed in decreasing order, then

λj(A) = max
Sj

min
x∈Sj ,‖x‖=1

xT Ax

Where Sj is a j dimensional subspace.

Positive Semidefinite Matrices. We next turn our attention to a certain class of sym-
metric matrices that are called positive semidefinite matrices.

Definition 6 A symmetric n×n matrix is called positive semidefinite if all its eigenvalues
are non-negative. The matrix is positive definite if all its eigenvalues are positive.

Below we summarize equivalent ways of characterizing positive semidefinite ma-
trices.
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Proposition 7 For a real symmetric n× n matrix A, the following are equivalent:

• (i) A is positive semidefinite (PSD for short);

• (ii) the quadratic form xT Ax is nonnegative for every x ∈ Rn;

• (iii) A can be written as the Gram matrix of n vectors u1, · · · , un ∈ Rm for some m;
this means that aij = 〈ui, uj〉. Equivalently A = UT U for some matrix U ;

• (iv) A is a nonnegative linear combination of matrices of the type xT x;

• (v) The determinant of every symmetric minor of A is nonnegative.

Some well known definitions and facts follow.

Definition 8 (Frobenius inner product of matrices) For two n × n matrices A and B we
define the following inner product:

A •B =
∑

i,j

aijbij = tr(AT B)

Definition 9 A convex cone in Rn is a set of vectors V , with the following properties:

1. v ∈ V implies αv ∈ V for any positive scalar α.

2. v ∈ V and u ∈ V implies that v + u ∈ V .

Proposition 10 • The sum of two PSD matrices is PSD.

• If A and B are PSD matrices then tr(AB) ≥ 0 and equality holds iff AB = 0. How-
ever, the product of two PSD matrices need not be PSD.

• A matrix A is PSD iff A •B ≥ 0 for every PSD matrix B.

Given the above, we conclude with the geometric statement that the set of all
positive semidefinite matrices forms a convex closed cone in Rn×n with vertex 0.

2.2 Spectra of Graphs

2.2.1 The Adjacency Matrix.

We remind the reader that for a graph G, the adjacency matrix A = AG is defined
as :

AG =
{

1 if (u, v) ∈ E
0 if (u, v) /∈ E

If the graph has n vertices, AG has n real eigenvalues µ1 ≥ µ2 ≥ · · ·µn. The
eigenvectors that correspond to these eigenvalues form an orthonormal basis of Rn. We note
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that if the graph is d-regular then the largest eigenvalue is equal to d and the corresponding
eigenvector is the all-one’s vector.

We can use the Courant-Fisher Theorem to characterize the spectrum of A. The
largest eigenvalue satisfies

µ1 = max
x∈Rn

xT Ax

xT x

If we denote the first eigenvector by x1 then

µ2 = max
x∈Rn,x⊥x1

xT Ax

xT x

Similar definitions hold for the eigenvalues µi, i ≥ 3.
We also allow weighted graphs which are viewed as a graph which has for each

pair (u, v) of vertices, assigned a certain weight wuv . The weights are usually real numbers
and they must satisfy the following conditions:

• (i) auv = wvu for all v, u ∈ V (G) , and

• (ii) wvu 6= 0 , if and only if v and u are adjacent in G .

Unweighted graphs can be viewed as a special case of weighted graphs, by specify-
ing, for each u, v ∈ V (G) , the weight wuv to be equal to the number of edges between u and
v. In the weighted case, we can similarly define the adjacency matrix A = A(G) = [wuv].

There are many useful connections between the eigenvalues of a graph and its
combinatorial properties.

As an example, we state the following ( [CDS79], [Lov79]). The proof follows easily
from interlacing eigenvalues.

Proposition 11 The maximum size ω(G) of a clique in G is at most µ1 + 1. This bound
remains valid even if we replace the non-diagonal 0’s in the adjacency matrix by arbitrary
real numbers.

The following bound on the chromatic number is due to Hoffman [Hof08].

Proposition 12 The chromatic number χ(G) of G is at least 1−( µ1

µn
). This bound remains

valid even if we replace the 1’s in the adjacency matrix by arbitrary real numbers.

2.2.2 The Graph Laplacian and its Spectrum.

Basic Properties. Let d(v) denote the degree of v ∈ V (G), d(v) =
∑

u wuv , and let
D = D(G) be the diagonal matrix indexed by V (G) and with dvv = d(v) . The matrix
L = LG = D(G)−A(G) is called the Laplacian matrix of G . The matrix LG is sometimes
called the Kirchhoff matrix of G due to its role in the well-known Matrix-Tree Theorem
which is usually attributted to Kirchhoff.

The following properties were established by several authors [Kel], [Vah65],
[AM85b] for the case of unweighted graphs. The proofs carry over to the weighted case
if all the weights are non-negative.
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Theorem 13 Let G = (V, E,w) be a weighted undirected graph with n vertices and m edges
and weights we > 0. Then:

• (a) LG has only real eigenvalues,

• (b) LG is positive semidefinite,

• (c) its smallest eigenvalue is λ1 = 0 and a corresponding eigenvector is 1. The
multiplicity of 0 as an eigenvalue of LG is equal to the number of connected components
of G.

We note the next useful expression for the inner product (quadratic form) 〈LGx, x〉
which holds also in the weighted case:

〈LGx, x〉 =
∑
uv

wuv(xu − xv)2 (2.2)

Let λ1, · · · , λn be the eigenvalues of LG in increasing order and repeated according
to their multiplicity. So, item (c) above is equivalent to the statement that λ1 = 0 , and
λ2 > 0 if and only if G is connected.

The Incidence Matrix and the Cut Space of a Graph. We next derive an alternative
expression for the graph Laplacian and use it to show theorem (13). Namely, we observe
that if we orient the edges of G arbitrarily, we can write its Laplacian as L = BT WB where
Bm×n is the signed edge-vertex incidence matrix, given by

B(e, u) =





1 if u is e’s head,
−1 if u is e’s tail,
0 otherwise

and Wm×m is the diagonal matrix with W (e, e) = we. Denote the row vectors of
B by {be}e∈E and note that b(u,v)

T = χv − χu, where χ denotes the characteristic vector of
a node. It is well known that im(B) ⊆ Rm is the cut space of G, [GR].

We will assume from here on that the graph G is connected. For item (b) of
theorem (13), it is immediate that L is positive semidefinite since:

xTLx = xT BT WBx = ‖W 1/2Bx‖2
2 ≥ 0

For (c), we also have ker(L) = ker(W 1/2B) = span(1), since

xTLx = 0 ⇔ ‖W 1/2Bx‖2
2

= 0

⇔
∑
uv

wuv(xu − xv)2 = 0

⇔ (xu − xv) = 0 for all edges (u, v)
⇔ x is constant, since G is connected.
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The Pseudoinverse of the Laplacian of a connected graph. Since L is symmetric,
we can diagonalize it and write

L =
n∑

i=2

λiuiui
T

Where ui are the orthonormal eigenvectors of L. Since the graph is connected, all
eigenvalues but λ1 are strictly positive. The Moore-Penrose Pseudoinverse of L is defined
as

L† =
n∑

i=2

1
λi

uiui
T (2.3)

Note that ker(L) = ker(L†) and that

LL† = L†L =
n∑

i=2

uiui
T

Which is simply the identity on im(L) = ker(L)⊥ = Rn \ span(1).

The Effective Resistance. The effective resistance Rij between two nodes i, j of a
weighted graph is the electrical resistance between the nodes of the corresponding resistor
network with branch conductances given by the edge weights. In other words, Rij is the
potential difference that appears across nodes i and j when a unit current source if applied
between them. Formally, we can define the effective resistance as follows. For more on
effective resistance the reader is referred to [GBS06], [LP].
Let v be the solution to the equation

LGv = ei − ej

where ei denotes the ith unit vector, with 1 in the ith position and zero everywhere else.
Note that ei − ej is in the range of LG so the above equation has a solution. We define Rij

as
Rij = ui − uj

We define the effective resistance matrix R ∈ Rn×n as R = [Rij ]. We note that R
is symmetric with 0 in the diagonal.

There are several alternative formulas to express the effective resistance between
two nodes [GBS06], [KR93]. We are primarily interested in the expressions that involve the
pseudoinverse of LG.

Claim 14 The following formula gives Rij in terms of LG
†.

Rij = (ei − ej)TLG
†(ei − ej) = (LG

†)ii + (LG
†)jj − 2(LG

†)ij

Proof:

We note that LGLG
† = I − 11†/n and multiply LGv on the left hand side by LG

†
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to get (I − 11†/n)v = LG
†(ei − ej) so

(ei − ej)TLG
†(ei − ej) = (ei − ej)v = ui − vj = Rij

¤

We also note that from the above claim it follows that

Rij = (ei − ej)TLG + 11†/n
−1

(ei − ej) (2.4)

λ2 - The Algebraic Connectivity of Graphs. The second smallest Laplacian eigen-
value λ2 of graphs is probably the most important information contained in the spectrum
of a graph. This eigenvalue is related to several important graph invariants, and it has been
extensively investigated. Most of the results are consequences of the well-known Courant-
Fischer principle which, as we noted before, states that

λ2 = max
x∈Rn,x⊥1,x 6=0

xTLGx

xT x
(2.5)

Fiedler [Fie75] obtained another expression for λ2. He also called the number
λ2(LG) algebraic connectivity influenced by its relation to the classical connectivity param-
eters of the graph- the vertex connectivity and the edge connectivity.

Proposition 15 Let G be a weighted graph with non-negative weights auv . Then

λ2 = 2nmin
x∈Φ

∑
uv∈E(G) auv(xu − xv)2∑

u∈V (G)

∑
v∈V (G)(xu − xv)2

(2.6)

where Φ is the set of all non-constant vectors.

The intrinsic relation between the algebraic connectivity of a graph and the edge
expansion can be summarized in the Alon-Millman-Cheeger inequality [Che70], [AM85a],
[Alo86]. We first define the edge expansion (sparsest cut) of a graph G.

Definition 16 Let (S, S) denote a cut, i.e. a partition of the graph in two disjoint pieces.
The edge expansion h(G) of a graph G is defined as follows:

h(G) = min
S:|S|≤V/2

E(S, S)
|S| (2.7)

Equivalently, if we let xS ∈ {0, 1}n be the characteristic vector of the cut (S, S),
with xS(v) = 1 if v ∈ S and xS(v) = 0 if v ∈ S, and |S| ≤ |V |

2 , then

h(G) = min
xS∈{0,1}n,x 6=0

xT
SLGxS

xT
SxS

(2.8)
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Theorem 17 ( [Che70], [AM85a], [Alo86]) Let dmax be the maximum degree of a node in
G. Then

λ2 ≤ h(G) ≤
√

2dmaxλ2 (2.9)

Remark 1 There is a very strong relationship between the eigenvalues of the adjacency
matrix of G and the eigenvalues of the Laplacian. In particular, for d–regular graphs,
λi = d− µi.

2.3 Convex Functions and Convex Optimization

In this section, we give some principles regarding convex functions and introduce
convex optimization.

Convex Functions. We first define convex sets.

Definition 18 A set C is convex if the line segment between any two points in C lies in C,
i.e., if for any x, y ∈ C and any 0 ≤ θ ≤ 1, we have

θx + (1− θ)y ∈ C

Definition 19 (Convex Function) A function f : Rn → R is convex if dom(f) is a convex
set and if for all x, y ∈ dom(f) and all 0 ≤ θ ≤ 1.

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y)

The Epigraph. The graph of a function f : Rn → R is defined as

{(x, f(x))|x ∈ domf}

which is a subset of Rn+1. The epigraph of f is defined as

epif = {(x, t)|x ∈ domf, f(x) ≤ t}
Note that a function is convex if and only if its epigraph is a convex set.

Convex Optimization. A convex optimization problem is one of the form

minimize f0(x)
subject to fi(x) ≤ bi, ii = 1, 2, · · · ,m

where the functions f0, fi : Rn → R are convex.
There is in general no analytical formula for the solution of convex optimization

problems, but (as with linear programming problems) there are very effective methods for
solving them. Interior-point methods work very well in practice, and in some cases can be
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proved to solve the problem to a specified accuracy with a number of operations that does
not exceed a polynomial of the problem dimensions.

We next note a well-known fact about convex programs. For a proof see, for
example [BV04], chapter 11.

Fact 20 Consider a convex program as above. If there is a separation oracle that runs
in polynomial time for deciding whether a point is feasible, or, alternatively, if there is a
membership oracle for the convex set, the set is centered (i.e., we are given a small ball
inside the set), and there is separation oracle for level sets of the objective function, then
the convex program can be solved in polynomial time by some interior point method.

2.3.1 Semidefinite Programming

2.3.2 Properties of Semidefinite Programs

A special case of convex program is a semidefinite program (SDP for short).
Namely, it is a convex optimization problem of a linear objective function over the in-
tersection of the cone of positive semi-definite matrices with an affine space. It has the
following form :

minimize cT x

subject to x1A1 + x2A2 . . . xnAn −B º 0

where A1, A2, . . . An, B are symmetric square matrices and c ∈ Rn is a given vector.
We can think of X = x1A1+x2A2 . . . xnAn−B as a matrix whose entries are linear functions
of the variables.

The dual of the above SDP is

maximize B • Y

subject to A1 • Y = c1

A2 • Y = c2

...
An • Y = cn

Y º 0

From (weak) duality, we have the following inequality between the optimal values
of the primal and dual SDP: valprimal ≤ valdual.

Strong duality obtains if the primal semidefinite program above is strictly feasible,
i.e., there exists an x with

x1A1 + x2A2 . . . xnAn −B Â 0

When strong duality holds, we have the equality : valprimal = valdual.
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The special case when A1, · · · , An, B are diagonal matrices is just a generic linear
program, and it is very fruitful to think of semidefinite programs as generalizations of linear
programs.

2.3.3 Semidefinite Programs for Eigenvalue Optimization

In many cases semidefinite programs arise in the form of minimizing or maximizing
an appropriate linear combination of eigenvalues of a symmetric matrix subject to linear
constraints on the matrix. In this section we give some examples of eigenvalue optimization
problems that can be cast as an SDP.

We will focus on propositions 12 and 11 that appeared in section 2.2. We make
the following observation :

In order to determine the best choice of the “free” entries of the matrix as promised
in the statement of propositions 12 and 11, we can write a semidefinite program. For the
bound on the maximum size of a clique as in 11, we fix the diagonal entries at 0, the entries
corresponding to edges at 1, but are free to choose the entries corresponding to nonadjacent
pairs of vertices. We want to minimize the largest eigenvalue. This can be written as a
semidefinite program:

minimize t

subject to tI −X º 0
Xii = 0 ∀i ∈ V

Xij = 1 ∀ij ∈ E

In addition, it turns out that the semidefinite program for 12 is the dual of the
above, and their common optimum value is a parameter that was called θ function by
Lovasz [Lov79].

2.3.4 Semidefinite Programs in Approximation Algorithms

Semidefinite programs are often used as relaxations of 0/1 quadratic programs. In
obtaining the relaxations, we often replace 0/1 variables x1, . . . , xn by vectors v1, . . . ,vn.
Alternatively, we may think of solving for an n×n positive semidefinite matrix Y as above,
such that Yij = vi·vj. In what follows we will give an example of an approximation algorithm
for a 0/1 quadratic optimization problem that is based on semidefinite programming.

Definition 21 (MAXCUT) Given a graph G = (V, E), the MAXCUT problem asks to
output a partition of the vertices V so as to maximize the number of edges crossing from
one side to the other.

The first approximation algorithm based on an SDP is due to Goemans and
Williamson [GW95], for the MAXCUT problem. This problem can be expressed as an
integer quadratic program:
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maximize
∑

(i,j)∈E

1− vivj

2

subject to vi ∈ {−1, 1} ∀i

Unless P = NP, we cannot solve this maximization problem efficiently. However,
the authors in [GW95] observed that relaxing the integer quadratic program into an SDP
and consequently rounding the SDP solution to obtain an approximate solution to the
original integer quadratic program results to a good approximation algorithm for MAXCUT.

The most natural relaxation is

maximize
∑

(i,j)∈E

1− 〈vi, vj〉
2

subject to ‖vi‖2 = 1 ∀i

where the maximization is over vectors vi instead of integer scalars. Solving the SDP gives a
set of unit vectors in Rn; since the vectors are not required to be collinear, the value of this
relaxed program can only be higher than the value of the original quadratic integer program.
Finally, a rounding procedure is needed to obtain a partition. Goemans and Williamson
simply choose a uniformly random hyperplane through the origin and divide the vertices
according to which side of the hyperplane the corresponding vectors lie. Straightforward
analysis shows that this procedure achieves an expected approximation ratio (performance
guarantee) of 0.87856. Assuming the Unique Games Conjecture, it can be shown that this
approximation ratio is essentially optimal.

Since the original paper of Goemans and Williamson, SDPs have been applied to
develop numerous approximation algorithms. Recently, Prasad Raghavendra [Rag08] has
developed a general framework for constraint satisfaction problems based on the Unique
Games Conjecture.
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Chapter 3

Unique Games on Expanding
Instances

In this chapter we present two distinct algorithms that find good assignments for
instances of Unique Games when the underlying graph has some significant expansion. The
first algorithm is based on a spectral partitioning approach and performs well for arbitrary
Γ-max-lin constraints on the underlying Unique Games graph. The second algorithm is
based on semidefinite programming and covers the case where the constraints are arbitrary
permutations. We note that even though there is a reduction from the case where the
Unique Games instance has arbitrary constraints to the case where the constraints are Γ-
max-lin [KKMO], it does not preserve the expansion of the underlying graphs. Therefore
the results of the second algorithm are not implied nor can be obtained by the first.

The chapter is organized as follows. The first part of the chapter (sections 3.2-
3.3), is devoted to presenting the spectral approach which results in a spectral partitioning
algorithm for expanding instances of Unique Games where the constraints are arbitrary
Γ-max-lin. In section 3.2, we analyze the behavior of the SDP by Feige and Lovász [FL92]
on random instances of unique games. We show that on random d-regular graphs with
permutations chosen at random, the value of the SDP is very small with probability 1 −
e−Ω(d). Hence, the SDP provides a proof of unsatisfiability for random unique games. In
section 3.3 we show how the eigenvectors of a particular matrix may be used to recover good
assignments to highly satisfiable instances of unique games in some special cases. We start
in 3.3.1 by giving a spectral algorithm for recovering planted solutions. Given a random
instance consistent with a given solution on 1 − ε fraction of the edges, our algorithm
recovers a solution with value 1 − O(ε) with high probability at least 1 − e−Ω(d) over the
inputs. Using similar arguments as in the planted solution case, we conclude in 3.3.2 with
an algorithm that finds good solutions for a Γ-max-lin expanding unique game. We present
both cases in a unified manner in order to emphasize the main ideas that were used in the
analysis of the algorithm.
The second part of the chapter 3.4, describes a semidefinite programming-based algorithm
that finds good assignments for instances of Unique Games when the underlying graph has
some significant expansion and the constraints are arbitrary permutations. A new analysis
of the standard SDP is introduced, which involves correlations among distant vertices. In
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Maximize
∑

(u,v)∈E

k∑

i=1

〈ui,vπuv(i)〉 (3.1)

Subject to

∀ u ∈ V
∑k

i=1 ‖ui‖2 = 1 (3.2)
∀ u ∈ V ∀ i 6= j 〈ui,uj〉 = 0 (3.3)

(3.4)

Figure 3.1: SDP1 for UNIQUE GAMES

section 3.5, we also show how this technique leads to a parallel repetition theorem for unique
games when the graph is an expander.

3.1 Notation and Preliminaries

Unique Games. A Unique Game is defined in terms of a constraint graph G = (V,E),
a set of variables {xu}u∈V , one for each vertex u and a set of permutations (constraints)
Πuv : [k] → [k], one for each edge (u, v). An assignment to the variables is said to satisfy
the constraint on the edge (u, v) ∈ E if πuv(xu) = xv. The edges are taken to be undirected
and hence πuv = (πvu)−1. The goal is to assign a value from the set [k] to each variable xu

so as to maximize the number of satisfied constraints.
An instance of Unique Games is Γ-max-lin when the constraints are of a very

specific form, namely they are all linear equations over some abelian group Γ.
Khot [Kho] conjectured that it is NP-hard to distinguish between the cases when

almost all the constraints of a unique game are satisfiable and when very few of the con-
straints are satisfiable. Formally, the statement of the conjecture is the following:

Conjecture 22 (Unique Games Conjecture) For any constants ε, δ > 0, for any k >
k(ε, δ), it is NP-hard to distinguish between instances of unique games with domain size
k where at least 1 − ε fraction of constraints are satisfiable and those where at most δ
fraction of constraints are satisfiable.

SDP relaxation for UNIQUE GAMES. Let U = (G(V, E), [k], {πuv}(u,v)∈E) be a
UNIQUE GAMES instance. We use standard SDP relaxations that appear in figures 3.1
and 3.2, which involve finding a vector assignment for each vertex. For every u ∈ V , we
associate a set of k orthogonal vectors {u1, · · · ,uk}. In SDP1, the intention is that if i0 ∈ [k]
is a label for vertex u ∈ V then ui0 = 1 and ui = 0 for all i 6= i0. In SDP2, the intention is
that if i0 ∈ [k] is a label for vertex u ∈ V then ui0 = 1 and ui = 0 for all i 6= i0. Here, 1 is
some fixed unit vector and 0 is the zero vector. Of course, in a general solution to the SDP
this may no longer be true and {u1, · · · ,uk} is just any set of orthogonal vectors.
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Maximize Ee=(u,v)∈EEi∈[k]

〈
ui,vπuv(i)

〉
(3.5)

Subject to

∀ u ∈ V Ei∈[k] ‖ui‖2 = 1 (3.6)
∀ u ∈ V ∀ i 6= j 〈ui,uj〉 = 0 (3.7)
∀ u, v ∈ V ∀ i, j 〈ui,vj〉 ≥ 0 (3.8)

Figure 3.2: SDP2 for UNIQUE GAMES

3.2 Certifying Unsatisfiability for Random Instances of
Unique Games

We look at the SDP for Unique-Games that appears in figure 3.1. The feasible
region of the dual can be expressed as Z º 0 where Z is an nk×nk matrix. We use Zuv to
denote the k × k block corresponding to the vertices u and v. The blocks are given by

Zuv =





0 if (u, v) /∈ E, u 6= v
−1

2Πuv if (u, v) ∈ E
Zu if u = v

where Πuv is the permutation matrix corresponding to πuv and Zu is the (symmetric)
matrix of all the variables corresponding to the vertex u. The off-diagonal entries of Zu are
(Zu)ij = (Zu)ji = 1

2xu
{i,j} - a separate variable for each pair {i, j} and vertex u. All the

diagonal entries are the same, equal to a single variable x(u). The objective function of the
whole SDP is

∑
u∈V xu.

We will consider dual solutions with xu
{i,j} = 2d/k for all u ∈ V and i, j ∈ [k], i 6= j.

Also, we set x(1) = x(2) = . . . = x(n) = λ + d/2k. Here λ is taken to be an upper bound on
the second eigenvalue. Note that the first eigenvalue of M is d since M can be thought of as
the adjacency matrix of a d-regular graph on nk vertices. The objective value as nd/2k+nλ.
Putting in these values for the variables, we will need to show that the following equation
is satisfied.

λI +
d

2k
J − 1

2
M º 0

where I is the nk×nk identity matrix, J is a block diagonal matrix with k×k blocks of all
1s on the diagonal and M is a block matrix with Muv = Πuv if (u, v) ∈ E and 0 otherwise.

Let z denote the all vector with all coordinates 1√
nk

. Then z is the first eigenvector
of M . We prove the following in the next section

Theorem 23 Let M be a matrix generated according to a random d-regular graph and
random permutations on each edge. Then, with probability 1− e−Ω(d), λ2(M) ≤ Cd3/4

Hence, we take λ = Cd3/4 which is a bound on the second eigenvalue1. Note that
1We believe that it is possible to improve this bound to even C

√
d but this is not very important for our
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z is the first eigenvector of both J and M . Since we can express any vector x and αz + βw
with w ⊥ z, we have

xT

(
λI +

d

2k
J − 1

2
M

)
x = (αz + βw)T

(
λI +

d

2k
J − 1

2
M

)
(αz + βw)

= λ + α2 d

2
+ β2 d

2
wT Jw − 1

2
(
α2zT Mz + β2wT Mw

)

Since J is positive semidefinite, zT Mz ≤ d and wT Mw ≤ Cd3/4, we have xT (λI + λ1
2kJ −

1
2M) ≥ 0 for every x. This gives that the value of the SDP for random d-regular graphs is
|E|
k + |E|

d1/4 with high probability.

3.2.1 Bounding the second eigenvalue for random d-regular graphs

We consider undirected random 2d-regular graphs G2d on n vertices constructed
by choosing d permutations (over n elements) independently at random. For each of the
chosen permutations σ and for each vertex u we add to the graph the edge (u, σ(u)). The
unique game is then constructed for by then picking a random permutation πuv (over k
elements) for each edge (u, v) ∈ E.

The bound on the second eigenvalue is obtained in two steps. We first by first
bound the expected value by examining the trace of a power of the matrix M . We then
show a concentration bound using an application of Talagrand’s inequality adapted from
[AKV02].

3.2.2 Bounding the mean

In the following argument, it will be convenient to consider the normalized matrices
M∗ = (2d)−1M , A∗ = (2d)−1A. For any positive integer p, we have Trace((M∗)p) =

1
(2d)p Trace(Mp) and same for A∗. Let ρ1, ρ2, · · · , ρnk the eigenvalues of M∗ in order of
decreasing value. Clearly, ρ1 = 1. Our next goal is to upper-bound the mean value of the
quantity ρ = max{ρ2, |ρn|}. Let p be a large positive integer to be fixed later.

Lemma 24
E[ρ] ≤ (E[Trace((M∗)2p)]− 1)1/2p

Proof: Because Trace((M∗)2p) =
∑

1≤i≤nk ρi
2p and because all the eigenvalues of a sym-

metric matrix are real, we have :

ρ2p ≤ Trace((M∗)2p)− 1

Taking expectations over the probability space described above,(that is, over all 2d-regular
graphs and over all permutations of k elements within each non-zero block), we have

E[ρ] ≤ E[ρ2p]1/(2p) ≤ (E[Trace((M∗)2p)]− 1)1/2p

purposes.
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by Jensen’s inequality. ¤
We next relate the value of E[Trace((M∗)2p)] to E[Trace((A∗)2p)].

Claim 25 Let A = [aij ] be the adjacency matrix of a graph G and M be a block matrix
with Muv = Πuv if (u, v) ∈ E and 0 otherwise. Then E[Trace(M2p)] = Trace(A2p) where
p is a positive integer and the expectation on the left hand side is taken over the choice of
permutations.

Proof: Let S be a set containing all the sequences of 2p+1 nodes of G that begin and end
at the same node. I.e S = {uu1 · · ·u2pu}. Each s ∈ S corresponds to a walk on G of length
2p that begins and ends at the same node and therefore also corresponds to a sequence of
blocks of the matrix M above that begins and ends at the same block.

For any matrix Q = [qij ] and for any positive integer n we have

Trace(Qn) =
∑

i1,i2,...in

qi1i2qi2i3 . . . qini1

Observe that when Q is the adjacency matrix of a graph, each term in the above sum is 1
if i1, i2, · · · in, i1 is a path in the graph and 0 otherwise.

Thus, for the matrices A and M we have

Trace(A2p) =
∑

u1u2...u2pu1∈S

au1u2 . . . au2pu1

Trace(M2p) =
∑

u1,u2,...,u2pu1∈S
i1,i2,...,i2p∈[k]

m(u1,i1)(u2,i2) . . . m(u2p,i2p)(u1,i1)

where the tuple (u, i) corresponds to the index of the ith element of block u.
We can write each term m(u,i)(v,j) = auv . . . I{πuv(i)=j}, where the random variable

I{πuv(i)=j} is 1 when πuv(i) = j and 0 otherwise. We can now re-write the trace as

Trace(M2p) =
∑

u1u2...u2pu1∈S

au1u2 . . . au2pu1

∑

i1,i2,...,i2p∈[k]

I{πu1u2 (i1)=i2} . . . I{πu2pu1 (i2p)=i1}

and, taking expectation over all permutations

E[Trace(M2p)] =
∑

u1u2...u2pu1∈S

au1u2 . . . au2pu1

∑

i1,i2,...,i2p∈[k]

P [πu1u2(i1) = i2∧. . .∧πu2pu1(i2p) = i1]

For multi-indices U = u1u2 . . . u2p and I = i1i2 . . . i2p let EU,I be the event
{πu1u2(i1) = i2 ∧ · · · ∧ πu2pu1(i2p) = i1}. For a fixed U , the events EU,I where I takes
all possible values consist of a partition of the whole probability space. Therefore with this
notation,

E[Trace(M2p)] =
∑

U

au1u2 . . . au2pu1

∑

I

P [EU,I ] =
∑

U

au1u2 . . . au2pu1 = Trace(A2p)
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¤
Hence, to bound ρ, it suffices to bound E[Trace(A2p)]. The following lemma can

be found in [BS87].

Lemma 26 Let A∗ as above and p = (2− ε′)logd/2n a positive integer. Then

E[Trace((A∗)2p)] ≤ 1
n1−ε′ + 1 + O(

(logn)4

n
)

Claim 27 Let p be as above. Then for every ε > 0 we have the inequality :

E[ρ] ≤ (
2
d
)1/4(1 + ε + o(1))

Proof: From claim 25 we have

E[Trace((M∗)2p)] = E[Trace((A∗)2p)]

Using lemma 26 we have

E[Trace((M∗)2p)] ≤ (
1

n1−ε′ + 1 + O(
(logn)4

n
))

Hence,

E[ρ] ≤ (E[Trace((M∗)2p)]− 1)1/2p = (E[Trace((A∗)2p)]− 1)1/(2(2−ε′)logd/2n)

≤ (
1

n1−ε′ )
1

2(2−ε′)logd/2n (1 + o(1)) = (
2
d
)1/4(1 + ε + o(1))

Which follows by the appropriate choice of ε′. ¤
From the above calculations it follows that if λ is the second largest (in absolute

value) eigenvalue of M , then
E[λ] = O(d3/4)

We note that it is also possible to bound E[λ] by O(
√

d) by using the (more involved) bound
on Trace((A∗)2p) from [Fri91].

3.2.3 Concentration of λ around the mean

We will next prove that with probability that tends to 1 as n → ∞, λ deviates
from its mean by at most

√
d. For that we will first prove concentration of λ around its

median, and then use elementary probability techniques to show that the expectation and
the median of λ are very close. Namely, we will prove the following theorem :

Theorem 28 The probability that λ2 deviates from its median by more than t is at most
4e−t2/128 . The same estimate holds for the probability that λkn deviates from its median by
more than t. Therefore Pr[|λ−µ(λ)| ≥ t] ≤ 2e−t2/128, where µ(λ) denotes the median of λ.
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For that reason, we will use Talagrand’s inequality in a similar manner as in
[AKV02].

Theorem 29 (Talagrand’s Inequality) Let Ω1, Ω2, · · · ,Ωm be probability spaces, and let Ω
denote their product space. Let A and B be two subsets of Ω and suppose that for each
B = (B1, · · · , Bm) ∈ B there is a real vector α = (α1, α2, · · · , αm) such that for every
A = (A1, · · · , Am) ∈ A the inequality

∑

i:Ai 6=Bi

αi ≥ t(
m∑

i=1

αi
2)1/2

holds. Then
Pr[A]Pr[B] ≤ e−t2/4

We now apply Talagrand’s inequality to prove theorem 28. We will show the case
for λ2, but the same proof easily carries out for λkn. Some notation follows:
Let

(
m=n+1

2

)
and consider the product space Ω of the blocks Mij ,1 ≤ i, j,≤ n where each

block is a k × k permutation matrix. We identify each element of Ω with the vector
consisting of the corresponding m k × k blocks. Instead of i, j we will use indices u, v for
the block of M corresponding to vertices u, v. Let µ denote the median of λ2.
Let A = {M |λ2(M) ≤ µ} and B = {M |λ2(M) ≥ µ + t}. By definition of the median,
Pr[A] ≥ 1/2.

For any vector f = (f(1), · · · , f(nk)) ∈ Rnk we will denote by
fi ∈ Rk,1 ≤ i ≤ n the vector that corresponds to the i-th block of k coordinates of
f , i.e. fi = (f((i− 1)k), f((i− 1)k + 1), · · · , f(ik)). Let ‖f‖ be the euclidean norm of f .

Proof:(Of theorem 28) Fix a vector B ∈ B. Let f (1), f (2) denote the first and second unit
eigenvector of B. We define the following cost vector α = (auv) for B.

αuu = (‖f (1)
u ‖+ ‖f (2)

u ‖)

αuv =
√

2αuuαvv, v 6= u

Let D = {(u, v)|Auv 6= Buv}. We will show that
∑

(u,v)∈D

αuv ≥ c · t · (
∑

1≤u≤v≤n

α2
uv)

1/2

Note that ∑

1≤u≤v≤n

α2
uv = (

∑
αuu)(

∑
αvv) = (‖f (1)‖2 + ‖f (2)‖2)2 = 4

Let z = c1f
(1) + c2f

(2) be a unit vector (i.e. c1
2 + c2

2 = 1) which is perpendicular
to the first eigenvector of A. Note that such a vector can always be found, since the
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orthogonality of f (1) and f (2) implies that the subspace span{f (1), f (2)} is 2-dimensional.
Then

zT Az ≤ λ2(A) ≤ µ

and

zT Az ≥ λ2(B) ≥ µ + t

which implies

t ≤ zT (B −A)z ≤
∑

(u,v)∈D

zu
T (Buv −Auv)zv ≤

∑

(u,v)∈D:(Buv−Auv)ij 6=0

|zui||zvj |

≤
∑

(u,v)∈D

√
2‖zu‖2

√
2‖zv‖2

≤
∑

(u,v)∈D

2
√

αuu
√

αvv =
√

2
∑

(u,v)∈D

αuv

The fourth inequality holds because each coordinate appears at most twice (each
block is a permutation matrix). By combining the above, we obtain

∑

(u,v)∈D

αuv ≥ t

4
√

2
(
∑

αvv
2)1/2 =⇒ Pr[B] ≤ 2e

−t2

128

¤

We conclude by showing that the eigenvalues are also concentrated around their
expectation. Namely,

Theorem 30 Pr[|λ−E[λ]| ≥ t] ≤ e−(1−o(1))t2/128

To prove this, we show that the expectation and the median of eigenvalues are
very close. We show the result for λ2 but the result holds for all eigenvalues (with different
constants in the exponent).

Claim 31 E[λ2]− µ ≤ 8
√

2π

Proof:

E[λ2]− µ ≤ E[|λ2 − µ|] =
∫ ∞

0
P [|λ2 − µ| > t]dt ≤

∫ ∞

0
2e

−t2

128 dt = 8
√

2π

¤
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3.3 Recovering Solutions by Spectral Methods

For a given instance of unique games on a graph G = (V, E), let M denote (as
before) the nk×nk symmetric matrix such that the k×k block Muv is equal to the permu-
tation matrix Πuv if (u, v) ∈ E and 0 otherwise. We shall now show how the eigenvectors of
M may be used to recover good assignments to highly satisfiable instances of unique games
in some special cases.

Specifically, we handle the cases when the instances are random regular graphs
with random constraints, and also when the constraints are arbitrary Γ-max-lin instances
and the underlying graph has some significant expansion. The properties used in both cases
are the eigenvalue gap of the underlying graph and small number of eigenvectors of M with
high eigenvalue.

We give the analysis for d-regular graphs in both cases to give a unified treatment.
While our arguments for random graphs work give better bounds for regular graphs, the
ones for expanding Γ-max-lin instances can easily be generalized to non-regular graphs by
considering the eigenvectors of the matrix D−M instead of M . Here D denotes an nk×nk
diagonal matrix with Duu = deg(u) · I. If we think of M as the adjacency matrix of graph
with vertex set V × [k] and each edge of G replaced by a matching, then D − M can be
thought of as the Laplacian matrix of that graph.

We construct an “almost satisfiable” instance according to the following model,
which captures both the cases mentioned above:

• Pick a d-regular graph G = (V, E) according to some distribution DG.

• To every u ∈ V , assign a value A(u) ∈ [k].

• For every edge (u, v) ∈ E, pick a constraint πuv consistent with A(u) and A(v) from
some distribution Duv. Let M be tha matrix of this completely satisfiable game. We
denote the game by (G, k, M).

• Let an adversary pick any ε|E| edges and replace their constraints by arbitrary con-
straints. Let the new matrix be M̂ and let (G, k, M̂) denote the perturbed game.

The above model captures the random model with planted solutions if we take DG

to be the distribution over random d-regular graphs and Duv to be uniform over permuta-
tions consistent with A(u) and A(v). The second case can be realized by taking DG as any
arbitrary distribution over graphs with second eigenvalue (say) at most (1 − γ)d and Duv

as arbitrary Γ-max-lin constraints.
Let W the span of the eigenvectors of M̂ with eigenvalue at least (1− 2ε)d. The

algorithm simply looks at a set S ⊆ W of polynomialy many candidate vectors and “reads-
off” an assignment as described below. The set S is chosen differently in each case.

Recover-SolutionS(G, k, M̂)

• For each x ∈ S, construct an assignment Ax by assigning to each vertex u, the index
corresponding to the largest entry in the block (xu1, . . . , xuk) i.e. A(u) = argmaxixui.

• Out of all assignments Ax for x ∈ S, choose the one satisfying the maximum number
of constraints.
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To choose S, we will look at the analog of W for the matrix M . Let Y denote the
span of eigenvectors of M with eigenvalue at least (1−ε). We will first show that if G has a
large eigenvalue gap, then every vector in W is close to some vector in Y . We then identify
some “nice” vectors in W such that the algorithm works for any vector which close to some
nice vector. We then identify a set S ⊆ W such that at least one vector in S is close to a
nice vector.

To show that the eigenspaces W and Y are close, we use the following claim
which essentially appears in [DK70] as the sin θ theorem. We give the proof below for
self-containment.

Claim 32 Let w be a unit length eigenvector of M̂ with eigenvalue λ̂ ≥ (1−2ε)d and let λs

denote the largest eigenvalue of M which is smaller than (1− 2ε)d. Then, w can be written
as αy + βy⊥ with |β| ≤

∥∥∥(M − M̂)w
∥∥∥ /(λ̂− λs)

Proof: We have

(M − M̂)w = αMy + βMy⊥ − λ̂w = α(My − λ̂y) + β(My⊥ − λ̂y⊥)

Since (M − λ̂I)y and (M − λ̂I)y⊥ are in orthogonal eigenspaces, we have

∥∥∥(M − M̂)w
∥∥∥

2
= α2

∥∥∥(M − λ̂I)y
∥∥∥

2
+ β2

∥∥∥(M − λ̂I)y⊥
∥∥∥

2
≥ β2

∥∥∥(M − λ̂I)y⊥
∥∥∥

2

However,
∥∥∥(M − λ̂)y⊥

∥∥∥ ≥ (λ̂− λs) which proves the claim. ¤

Hence, to prove that the space Y does not change by much due to the perturbation,
we simply need to bound

∥∥∥(M − M̂)w
∥∥∥. We shall also need the fact that w is somewhat

“uniform” over each block. To formalize this, let w be the n-dimensional vector such that
wu = ‖wu‖ where wu is the k-dimensional vector (wu1, . . . , wuk)T . We then show that w is
very close to the all-one’s vector 1.

Claim 33 If w is an eigenvector of M̂ with eigenvalue more than (1 − 2ε)d and G has
second eigenvalue less than (1− γ)d, then w can be written as a1 + b1⊥ with |b| ≤

√
2ε
γ

Proof: Since, w corresponds to a large eigenvalue, we have that

(1− 2ε)d ≤ (ŵ)T M̂ŵ ≤
∑
u,v

‖wu‖Auv ‖wv‖ = (w)T Aw

Writing w as a√
n
1 + b1⊥, we get

(w)T Aw ≤ a2d + b2(1− γ)d

=⇒ (1− 2ε)d ≤ a2d + b2(1− γ)d =⇒ |b| ≤
√

2ε

γ

¤
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Using the above, and the fact that the matrix M is only perturbed in ε fraction
of the edges, we can now bound

∥∥∥(M − M̂)w
∥∥∥ as follows.

Claim 34
∥∥∥(M − M̂)w

∥∥∥ ≤ 5
√

ε
γ

Proof: Define the n×n matrix R as Ruv = 1 when the block (M −M̂)uv has any non-zero
entries, and Ruv = 0 otherwise. Note that if (M − M̂)uv is non-zero, then it must be the
difference of two permutation matrices. Thus, for all v

∥∥∥(M − M̂)uvwv

∥∥∥ ≤ 2Ruv ‖wv‖. We
have that

∥∥∥(M − M̂)w
∥∥∥ =

√√√√∑
u

∥∥∥∥∥
∑

v

(M − M̂)uvwv

∥∥∥∥∥
2

≤

√√√√∑
u

(∑
v

∥∥∥(M − M̂)uvwv

∥∥∥
)2

≤

√√√√∑
u

(∑
v

2Ruv ‖wv‖
)2

≤ 2 ‖Rw‖

To estimate ‖Rw‖, we break it up as

‖Rw‖ ≤ a√
n
‖R · 1‖+ b ‖R · 1⊥‖

Since R has at most d 1s in any row, b ‖R · 1⊥‖ ≤
√

2ε
γ d. Also, ‖R · 1‖ =

√∑
u (

∑
v Ruv)

2.
Since R has a total of εnd 1s, this expression is maximized when it has d 1s in εn rows.
This gives 1√

n
‖R · 1‖ ≤ √

εd. Combining with the above, we have that

∥∥∥(M − M̂)w
∥∥∥ ≤ 2

√
εd + 2

√
2ε

γ
d ≤ 5

√
ε

γ

¤

Combining the above bound with claim 32, we get that any unit-length vector
w ∈ W can be expressed as αy + βy⊥ where y ∈ Y and |β| ≤ 5

√
ε
γ · 1

(1−2ε)d−λs
. Recall that

λs was the largest eigenvalue of M smaller than (1 − 2ε)d. We now obtain bounds on λs

and define the set S of candidate vectors separately for each case.

3.3.1 The Planted solution model on random graphs

Since G is a d-regular graph and each block of M is a permutation matrix, the
first eigenvector of M (with eigenvalue d) is the vector 1

nk1. It is easy to verify that the
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following vector y is orthogonal to 1 and also has eigenvalue d.

yui =





k−1√
nk(k−1)

if i = A(u)

−1√
nk(k−1)

otherwise

The following claim shows that w.h.p. all other eigenvalues of the matrix M are
small and hence y is the only vector orthogonal to 1 with eigenvalue more than (1− 2ε)d.

Claim 35 With high probability over the choice of M , λi(M) ≤ O(
√

d) for all i ≥ 3.

Proof: Let z be a vector perpendicular to both 1 and y such that ‖z‖ = 1. Then, we must
have that

∑
u

∑

i

zui = 0 and
∑

u


(k − 1)zuA(u) −

∑

i 6=A(u)

zui


 = 0

which implies ∑
u

zuA(u) =
∑

i6=A(u)

zui = 0

We now define z1 as (z1)ui = yui for all i 6= A(u) and (z1)uA(u) = 0. Also, let
z2 = y−y1. Then for every u, (z2)uA(u) = zuA(u) is the only non-zero coordinate of z2. Also
‖z1‖ , ‖z2‖ ≤ 1. We have,

‖Mz‖ = ‖M(z1 + z2)‖ = ‖Mz1 + Mz2‖ ≤ ‖Mz1‖+ ‖Mz2‖

However, since all constraints are satisfied by the assignment xu = A(u), ‖Mz2‖ =
∥∥AzG

2

∥∥,
where zG

2 is an n-dimensional “projection” of z2 on the graph by setting (zG
2 )u = (z2)u,

and A is the adjacency matrix of the graph. From the above equations we have that∑
u zuA(u) = 0, which means that zG

2 is perpendicular to the first eigenvector of A. Thus,
w.h.p.

‖Mz2‖ =
∥∥AzG

2

∥∥ ≤ O(
√

d
∥∥zG

2

∥∥) ≤ O(
√

d)

We now consider a new game with matrix Mk−1 with alphabet size k−1 obtained by deleting
the value A(u) for each u. Note that this is a completely random unique game for alphabet
size k−1, since we chose constraints for M randomly after fixing πuv(A(u)) = A(v). Finally,
it remains to notice that ‖Mz1‖ =

∥∥∥Mk−1z
(k−1)
1

∥∥∥, where z
(k−1)
1 is the n(k− 1)-dimensional

projection of z1 obtained by deleting coordinates zuA(u) for all u. We also have

∑

u,i

(z(k−1)
1 )ui =

∑

u,i6=A(u)

zui = 0

which gives that z
(k−1)
1 is perpendicular to the first eigenvector of Mk−1 and hence by the

previous eigenvalue estimates,

‖Mz1‖ =
∥∥∥Mk−1z

(k−1)
1

∥∥∥ ≤ O(
√

d)
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¤
From the above, we get that w.h.p. λs ≤ O(

√
d). Also, if the underlying graph

G is random, then its second eigenvalue is O(
√

d) and γ is 1 − o(1). Combining this with
claims 32 and 34, we see that every vector w ∈ W can be expressed as w = αy + βy⊥, with
|β| ≤ 6

√
ε. Also, this gives α ≥ 1− 6

√
ε.

To choose S, note that M̂ has at least one eigenvector orthogonal to 1 with eigen-
value more than 1 − 2ε, since y ⊥ 1 and yT M̂y ≥ (1 − k−1

k ε)d ≥ (1 − 2ε)d. Also, the
dimension of W can be at most 2 since every unit vector in W must be close to a unit
vector in Y and w.h.p. Y has dimension 2. Let w ∈ W be the eigenvector of M̂ orthogonal
to 1. We take S = {w,−w}.

Also, since w ⊥ 1, we can express w = αy + βy⊥ with both y and y⊥ orthogonal
to 1. Then, for one of the vectors w or −w, y must be the second eigenvector of the matrix
M as described earlier. We now show that the algorithm recovers the corresct assignment
to most of the variables.

Claim 36 Let w = αy + βy⊥ with yui = (k − 1)/
√

nk(k − 1) if i = A(u) and yui =
−1/

√
nk(k − 1) otherwise. Then, for ε small enough, the coordinate wuA(u) has the maxi-

mum value within its block for at least (1− 99ε)n blocks u .

Proof: Within each block u, in order for coordinate A(u) to be no longer the maximum
one, it must happen that for some j

α
k − 1√

nk(k − 1)
+ β · (w⊥)uA(u) ≤ − α√

nk(k − 1)
+ β · (w⊥)uj

This gives

(w⊥)uj − (w⊥)uA(u) ≥
k√

nk(k − 1)
· α

β

=⇒ [(w⊥)uj ]2 + [(w⊥)uA(u)]
2 ≥ 1

2
[(w⊥)uj − (w⊥)uA(u)]

2 ≥ k

2n(k − 1)
· α2

β2

=⇒ ‖(w⊥)u‖2 ≥ k

2n(k − 1)
· (1− 6

√
ε)2

36ε

.
We call such a block “bad”. Assume that there are ηn bad blocks. Then

1 ≥
∑

bad u

‖(w⊥)u‖2 ≥ ηn · k

2n(k − 1)
· (1− 6

√
ε)2

36ε
=⇒ η ≤ 72ε

(1− 6
√

ε)2
≤ 99ε

¤
Therefore, for all but at most 99ε fraction of the blocks, the maximum coordinate

remains at the same place. The assigment recovered by our algorithm then fails to satisfy
at most 99εnd constraints corresponding to these blocks and εnd constraints perturbed
initially. Thus, the solution violates at most 100εnd = 200ε|E| constraints and has value at
least 1− 200ε.
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3.3.2 Expanding instances of Γ-max-lin

In the case of Γ-max-lin, for each edge (u, v) in the graph G, we have a constraint
of the form xu − xv = cuv, where xu, xv are variables taking values in Γ and cuv ∈ Γ. Let k
denote the size of the group Γ. As before, we consider a matrix M̂ for the given instance,
and think of it as an adversarial perturbation on ε-fraction of the edges of another matrix
M corresponding to a fully satisfiable instance. Let A be an assignment such that the values
xu = A(u) satisfy all the constraints in the instance corresponding to M .

As in the previous analysis, we assume that the graph is d-regular with second
eigenvalue at most d(1− γ). We will be able to distinguish instances of Γ-max-lin in which
(1 − ε) fraction of the constraints are satisfiable from those in which at most δ fraction of
the cosntraints are satisfiable for γ = Ω(ε1/3).

For the matrix M , we define the eigenvectors y(0), . . . , y(k−1) as

y
(s)
ui =

{
1√
n

if i = A(u) + s mod k

0 otherwise

Note that for Γ-max-lin, if ∀u : xu = A(u) is a satisfying assignment, then so is
∀u : xu = A(u)+s. Hence, the vectors y(0), . . . , y(k−1) correspond to satisfying assignments
and are eigenvectors with eigenvalue d for the matrix M . We now show that any eigenvector
which is orthogonal to all these vectors has eigenvalue at most d(1− γ).

Claim 37 Let x be a vector such that x ⊥ y(s)∀s . Then xT Mx ≤ (1− γ)d.

Proof: Since x ⊥ y(s)∀s, we have

∀s ∈ {0, . . . , k − 1}
∑

u

xuA(u)+s = 0

We then decompose x into x0, . . . , x(k−1), where

x
(s)
ui =

{
xui if i = A(u) + s mod k
0 otherwise

It is immediate from the definition that x =
∑

s x(s) and that ‖x‖2 =
∑

s

∥∥x(s)
∥∥2

.
To bound the eigenvalue corresponding to x, note that

xT Mx =
∑
s,t

(x(s))T Mx(t)

Let ei denote the ith unit vector in k-dimensions. We can then write x
(s)
u as

xuA(u)+seA(u)+s. Using this notation, we compute the terms in the above equation as

(x(s))T Mx(t) =
∑

(u,v)∈E

(x(s)
u )T Πuv(x(t)

v ) =
∑

(u,v)∈E

xuA(u)+sxvA(v)+t · (eA(u)+s)
T ΠuveA(v)+t

Since the permutation maps A(u) to A(v) and A(u) + s to A(v) + s for all s,
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(x(s))T Mx(t) = 0 when s 6= t. For the rest of the terms, we have

(x(s))T Mx(s) =
∑

(u,v)∈E

xuA(u)+sxvA(v)+s ≤ d(1− γ)
∥∥∥x(s)

∥∥∥
2

(Since
∑

u

xuA(u)+s = 0)

Hence,

xT Mx =
∑

s

(x(s))T Mx(s) ≤ d(1− γ)
∑

s

∥∥∥x(s)
∥∥∥

2
= d(1− γ) ‖x‖2

¤
We take Y to be the span of y(0), . . . , y(k−1). From the above, we know that the next

eigenvalue smaller than (1−2ε)d for M is λs ≤ (1−γ)d. Note that for all s ∈ {0, . . . , k−1},
we have (y(s))T M̂y(s) ≥ d(1−ε). Let w be any unit-length eigenvector of M̂ , with eigenvalue
at least (1− 2ε)d. By claims 32 and 34, we can express w as

∑
s αsy

(s) + βy⊥ with

|β| ≤ 5
√

ε

γ
d · 1

(1− 2ε)d− λs
≤ 5

√
ε

γ
· 1
γ − 2ε

≤ 6
√

ε

γ3

Note that this also implies that the eigenspace of vectors with eigenvalue greater
than (1 − ε)d has dimension at most k (otherwise we would find a vector othogonal to
y(0), . . . , y(k−1) which cannot be close to their span).

Hence, for γ = Ω(ε1/3), the eigenspace of the first k eigenvectors of M̂ (W ) is
close to the eigenspace of the first k eigenvectors of M (Y ). Also, Y contains the vectors
y(0), . . . , y(k−1) which encode the solutions. As in claim 36 we can show that the algorithm
works for any vector close to one of the vector y(s).

Claim 38 If x is a vector such that v = αy(s) + βy⊥ for some y(s) with α > 0, then the
coordinate xuA(u)+s is maximum in at least (1− β2

α2 n) blocks.

Proof: Within each block u, in order for coordinate A(u)+s to be no longer the maximum
one, it must happen that for some j

α
1√
n
≤ β · (y⊥)uj

However,this gives

‖(y⊥)u‖ ≥ (y⊥)2uj ≥ α2

β2n

Since ‖y⊥‖ = 1, this can only happen for at most β2

α2 n blocks. ¤

To find a vector v close to one of the vectors y(s), we discretize the eigenspace of
the first k eigenvectors of M̂ . Let w(0), . . . , w(k−1) be the eigenvectors. We define the set S
as

S =

{
v =

k−1∑

s=0

αsw
(s) | αs ∈ 1

10
√

k
Z, ‖v‖ ≤ 1

}
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S contains at least one vector v such that v = αy(s) + βy⊥ for some s and β ≤
1/10+6

√
ε/γ3 < 1/5 for γ > 20ε1/3. Thus, for this vector v, Recover-SolutionS(G, k, M̂)

recovers an assignment which agrees with y(s) in (1− 1
24) fraction of the block. Hence, the

assignment violates at most 1
24nd + εnd < nd/20 constaints. Since the total number of

constraints is nd/2, this satisfies more than 90 percent of the constraints.
Finally, it remains to argue that the running time of the algorithm is polynomial.

It can be calculated (see, for instance [FO05]) that the number of points in the set S is at
most ek ln 90. Since k = O(log n) (this must hold for the long-code based reductions to be
polynomial time), the number of points is polynomial in n. Hence, the algorithm runs in
polynomial time.

3.4 An SDP-based Algorithm

In this section, we present another efficient algorithm for finding a good solution
to the Unique Games problem when the constraint graph is an expander. This algorithm
is based on a new analysis of the SDP relaxation for Unique Games that appears in figure
3.2, which we repeat below for convenience. The novelty of the algorithm lies in the fact
that it involves correlations among distant vertices. The analysis also leads to a parallel
repetition theorem for Unique Games when the underlying graph is an expander.

Maximize Ee=(u,v)∈EEi∈[k]

〈
ui,vπuv(i)

〉
(3.9)

Subject to

∀ u ∈ V Ei∈[k] ‖ui‖2 = 1 (3.10)
∀ u ∈ V ∀ i 6= j 〈ui,uj〉 = 0 (3.11)
∀ u, v ∈ V ∀ i, j 〈ui,vj〉 ≥ 0 (3.12)

Our proof will use the fact that the objective function (3.9) can be rewritten as

1− 1
2Ee=(u,v)∈EEi∈[k]

∥∥ui − vπuv(i)

∥∥2 (3.13)

Let U = (G(V,E), [k], {πuv}(u,v)∈E) be a Unique Games instance, and let
{ui}u∈V,i∈[k] be an optimal SDP solution. Assume wlog that its value is 1 − ε, since oth-
erwise we know already that the instance is a NO instance. How do we extract a labeling
from the vector solution?

Constraint (3.10) suggests an obvious way to view the vectors corresponding to
vertex u as a distribution on labels, namely, one that assigns probability label i to u with
probability 1

k ‖ui‖2. The most naive idea for a rounding algorithm would be to use this
distribution to pick a label for each vertex, where the choice for different vertices is made
independently. Of course, this doesn’t work since all labels could have equal probability
under this distribution and thus the chance that the labels i, j picked for vertices u, v in an
edge e satisfy πe(i) = j is only 1/k.

More sophisticated roundings use the fact that if the SDP value is 1− ε for some
small ε, then the vector assignments to the vertices of an average edge e = (u, v) are highly
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correlated, in the sense that for “many” i,
〈
ui,vπ(i)

〉
> 1 − Ω(ε) where ui denotes the

unit vector in the direction of ui. This suggests many rounding possibilities as explored in
previous papers [Kho,Tre,CMMa], but counterexamples [KV] show that this edge-by-edge
analysis can only go so far: high correlation for edges does not by itself imply that a good
global assignment exists.

The main idea of this algorithm is to try to understand and exploit correlations in
the vector assignments for vertices that are not necessarily adjacent. If u, v are not adjacent
vertices we can try to identify the correlation between their vector assignments by noting
that since the vj ’s are mutually orthogonal, for each ui there is at most one vj such that
〈ui,vj〉 > 1/

√
2. Thus we can set up a maximal partial matching among their labels where

the matching contains label pairs (i, j) such that 〈ui,vj〉 > 1/
√

2. The vector assignments
to the two vertices can be thought of as highly correlated if the sum of squared `2 norm of
all the ui’s (resp, all vj ’s) involved in this matching is close to k. (This is a rough idea; see
precise definition later.)

Our main contribution is to show that if the constraint graph is an expander
then high correlation over edges necessarily implies high expected correlation between a
randomly-chosen pair of vertices (which may be quite distant in the constraint graph). We
also show that this allows us to construct a good global assignment. This is formalized
below.

3.4.1 Rounding procedure and correctness proof

Now we describe our randomized rounding procedure R, which outputs a labeling
Λalg : V → [k]. This uses a more precise version of the greedy matching outlined in the
above overview. For a pair u, v of vertices (possibly nonadjacent), let σuv : [k] → [k] be a
bijective mapping that maximizes Ei∈[k]

〈
ui,vσuv(i)

〉
; note that it can be efficiently found

using max-weight bipartite matching. The procedure is as follows:

1. Pick a random vertex u.

2. Pick a label i for u from the distribution, where every label i′ ∈ [k] has probability
1
k ‖ui′‖2.

3. Define Λalg(v) := σuv(i) for every vertex v ∈ V .

(Of course, the rounding can be trivially derandomized since there are only nk choices for
u, i.)

To analyse this procedure we define the distance ρ(u, v) of a pair u, v of vertices
as

ρ(u, v) :=
1
2
Ei∈[k]

∥∥ui − vσuv(i)

∥∥2 (3.14)

= 1−Ei∈[k]

〈
ui,vσuv(i)

〉
(using (3.10)).

We think of two vertices u and v as highly correlated if ρ(u, v) is small, i.e.,
Ei∈[k]

〈
ui,vσuv(i)

〉 ≈ 1.
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The following easy lemma shows that if the average vertex pair in G is highly
correlated, then the above rounding procedure is likely to produce a good a labeling. Here we
assume that G is a regular graph. Using standard arguments, all results can be generalized
to the case of non-regular graphs. A proof of the lemma can be found in Section 40.

Lemma 39 (Global Corr. =⇒ High Value) The expected fraction of constraints sat-
isfied by the labeling Λalg computed by the rounding procedure is

EΛalg←R[ val(Λalg) ] ≥ 1− 3ε− 6Eu,v∈V [ ρ(u, v) ].

It is easy to see that if the SDP value is 1− ε then the average correlation on edges is high.
For an edge e = (u, v) in G, let εe := 1

2Ei∈[k]

∥∥ui − vπuv(i)

∥∥2. Note, Ee[εe] = ε. Then we
have

ρ(u, v) =
1
2
Ei∈[k]

∥∥ui − vσuv(i)

∥∥2 = 1−Ei∈[k]

〈
ui,vσuv(i)

〉

≤ 1−Ei∈[k]

〈
ui,vπuv(i)

〉
= εe

(since σuv is a max-weight matching).

As mentioned in the overview, we show that high correlation on edges implies (when the
constraint graph is an expander) high correlation on the average pair of vertices. The main
technical contribution in this proof is a way to view a vector solution to the above SDP as
a vector solution for Sparsest Cut. This involves mapping any sequence of k vectors to a
single vector in a nicely continuous way, which allows us to show that the distances ρ(u, v)
essentially behave like squared Euclidean distances.

Lemma 40 (Low Distortion Embedding of ρ)
For every positive even integer t and every SDP solution {ui}u∈V,i∈[k], there exists a set of
vectors {Vu}u∈V such that for every pair u, v of vertices

1
2t ‖Vu −Vv‖2 ≤ ρ(u, v) ≤ ‖Vu −Vv‖2 + O(2−t/2).

Corollary 41 (Local Corr. =⇒ Global Corr.)

Eu,v∈V [ ρ(u, v) ] ≤ 2tε/λ + O(2−t/2).

Proof: We use the following characterization of λ for regular graphs G

λ = min
E(u,v)∈E ‖zu − zv‖2

Eu,v∈V ‖zu − zv‖2 , (3.15)

where the minimum is over all sets of vectors {zu}u∈V . This characterization also shows that
λ scaled by n2/|E| is a relaxation for the Sparsest Cut problem min∅6=S⊂V |E(S, S)|/|S||S|
of G . Now using the previous Lemma we have

Eu,v∈V [ ρ(u, v) ] ≤ Eu,v∈V ‖Vu −Vv‖2 + O(2−t/2)

≤ 1
λE(u,v)∈E ‖Vu −Vv‖2 + O(2−t/2)

≤ 2t
λ E(u,v)∈E [ ρ(u, v) ] + O(2−t/2).
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¤ By combining the Corollary 41 and Lemma 39, we can show the following theorem.

Theorem 42 There is a polynomial time algorithm that computes a labeling Λ with

val(Λ) ≥ 1−O
(

ε
λ log

(
λ
ε

))

if the optimal value of the SDP in Figure 3.2 for U is 1− ε.

Proof: By Corollary 41 and Lemma 39, the labeling Λalg satisfies a 1 − O(tε/λ + 2−t/2)
fraction of the constraints of U . If we choose t to be an integer close to 2 log(λ/ε), it follows
that opt(U) ≥ 1−O( ε

λ log(λ
ε )). Since the rounding procedureR can easily be derandomized,

a labeling Λ with val(Λ) ≥ 1−O( ε
λ log(λ

ε )) can be computed in polynomial time. ¤

We can show that the integrality gap (in terms of expansion) implied above is
tight up to a logarithmic factor. The next theorem can be derived using the techniques
in [DKSV,KV].

Theorem 43 For every ε > 0 small enough and for every n large enough, there is a Unique
Games instance Uε on Θ(log(n)) labels and a constraint graph with λ = Ω(ε), such that (1)
opt(Uε) ≤ 1/ logε n, and (2) there is an SDP solution for Uε of value at least 1−O(ε).

The next theorem shows that, assuming UGC, the approximation guarantee of
Theorem 42 cannot be improved by more than a constant factor.

Theorem 44 Assuming UGC, for every ε, δ > 0, there exists k = k(ε, δ) such that for
a Unique Games instance U = (G(V, E), [k], {πuv}(u,v)∈E) it is NP-hard to distinguish
between

• YES Case: opt(U) ≥ 1− ε,

• NO Case: opt(U) ≤ δ and λ > Ω(ε).

3.4.2 Proof of Lemma 39

We consider the labeling Λalg computed by the randomized rounding procedure
R. Recall that Λalg(v) = σuv(i) where the vertex u is chosen uniformly at random and the
label i is chosen with probability proportional to ‖ui‖2. For notational ease we assume that
σuu is the identity permutation and σuv is the inverse permutation of σvu. The following
claim gives an estimate on the probability that the constraint between an edge e = {v, w}
is satisfied by Λalg. Here we condition on the choice of u.

Claim 45 For every vertex u and every edge e = (v, w),
PrΛalg

[Λalg(w) 6= πv,w(Λalg(v)) | u] ≤ 3 · (ρ(u, v) + εe + ρ(w, u)).

Proof: We may assume that both σuv and σuw are the identity permutation. Let π = πvw.
First note PrΛalg

[Λalg(w) 6= π(Λalg(v)) | u] = Ei∈[k]

[
‖ui‖2 χi6=π(i)

]
, where χE denotes the
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indicator random variable for an event E . By orthogonality of the vectors {ui}i∈[k], it follows
that

Ei∈[k]

[
‖ui‖2 χi6=π(i)

]
≤ 1

2Ei∈[k]

[(
‖ui‖2 +

∥∥uπ(i)

∥∥2
)

χi6=π(i)

]

= 1
2Ei∈[k]

∥∥ui − uπ(i)

∥∥2
.

By triangle inequality,
∥∥ui − uπ(i)

∥∥ ≤ ‖ui − vi‖ +
∥∥vi −wπ(i)

∥∥ +
∥∥wπ(i) − uπ(i)

∥∥. Now
we square both sides of the inequality and take expectations, Ei∈[k]

∥∥ui − uπ(i)

∥∥2 ≤
3Ei∈[k] ‖ui − vi‖2 + 3Ei∈[k]

∥∥vi −wπ(i)

∥∥2 + 3Ei∈[k]

∥∥wπ(i) − uπ(i)

∥∥2 = 6ρ(u, v) + 6εe +
6ρ(w, u). ¤

Proof:[of Lemma 39] From Claim 45 it follows

EΛalg
[ val(Λalg) ] ≥ 1− 3Eu∈V Ee=(vw)∈E [ρ(u, v) + εe + ρ(w, u)] .

Since G is a regular graph, both (u, v) and (w, u) are uniformly distributed over all pairs of
vertices. Hence EΛalg

[ val(Λalg) ] ≥ 1− 3ε− 6Eu,v∈V [ ρ(u, v) ]. ¤

3.4.3 Proof of Lemma 40: the tensoring trick

Let t be an integer greater than or equal to 4, and {ui}u∈V,i∈[k] be an SDP solution
for U . Define ui = 1

‖ui‖ui and Vu = 1√
k

∑
i∈[k] ‖ui‖u⊗t

i , where ⊗t denotes t-wise tensoring.
Notice that the vectors Vu are unit vectors. Consider a pair u, v of vertices in G. The
following claim implies the lower bound on ρ(u, v) in Lemma 40.

Claim 46 ‖Vu −Vv‖2 ≤ t ·Ei∈[k]

∥∥ui − vσuv(i)

∥∥2

Proof: Since Vu is a unit vector for each u, it suffices to prove 〈Vu,Vv〉 ≥ 1 − tρ(u, v).
Let σ = σuv. By Cauchy-Schwarz,

1
k

∑
i ‖ui‖‖vσ(i)‖ ≤ 1

k

( ∑
i ‖ui‖2

)1/2(∑
i ‖vσ(i)‖2

)1/2 ≤ 1.

Thus there is some α ≥ 1 such that the following random variable X is well-defined: it takes
value

〈
ui,vσ(i)

〉
with probability α · 1

k‖ui‖‖vσ(i)‖. By Jensen’s Inequality, (E[X])t ≤ E[Xt].
Hence,

1− ρ(u, v)t ≤ (1− ρ(u, v))t =
(
Ei∈[k]

[‖ui‖‖vσ(i)‖
〈
ui,vσ(i)

〉])t

= (E[X/α])t ≤ (E[X])t/α

≤ E[Xt/α] = 〈Vu,Vv〉 .

This proves the claim. ¤

Matching between two label sets. In order to finish the proof of Lemma 40, it remains
to prove the upper bound on ρ(u, v) in terms of the distance ‖Vu −Vv‖2. For this part of
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the proof, it is essential that the vectors Vu are composed of (high) tensor powers of the
vectors ui. For a pair u, v of vertices, consider the following set of label pairs

M = {(i, j) ∈ [k]× [k] | 〈ui,vj〉2 > 1/2}.

Since {ui}i∈[k] and {vj}j∈[k] are sets of ortho-normal vectors, M as bipartite graph between
the labels for u and the labels for v is a (partial) matching, that is, every label for u has at
most one neighbor among the labels for v. Let σ be an arbitrary permutation of [k] that
agrees with the M on the matched labels, i.e., for all (i, j) ∈ M , we have σ(i) = j. The
following claim shows the upper bound on ρ(u, v) of Lemma 40.

Claim 47
1
2
Ei∈[k]

∥∥ui − vσ(i)

∥∥2 ≤ 1
2
‖Vu −Vv‖2 + O(2−t/2).

Proof: Let δ = ‖Vu −Vv‖2. Note that

1
k

∑

i,j

‖ui‖‖vj‖ 〈ui,vj〉t = 1− δ/2. (3.16)

We may assume that σ is the identity permutation. Then, ρ(u, v) is at most

1
2Ei∈[k] ‖ui − vi‖2 = 1−Ei∈[k] 〈ui,vi〉

≤ 1− 1
k

∑

i∈[k]

‖ui‖ ‖vi‖ 〈ui,vi〉t

(using 〈ui,vi〉 ≥ 0)

= δ/2 + 1
k

∑

i6=j

‖ui‖‖vj‖ 〈ui,vj〉t

(by (3.16))
= δ/2 + 〈p, Aq〉 ,

where pi = 1√
k
‖ui‖, qj = 1√

k
‖vj‖, Aii = 0, and for i 6= j, Aij = 〈ui,vj〉t. Since both p and

q are unit vectors, 〈p, Aq〉 is bounded by the largest singular value of A. As the matrix
A has only non-negative entries, its largest singular value is bounded by the maximum
sum of a row or a column. By symmetry, we may assume that the first row has the
largest sum among all rows and columns. We rearrange the columns in such a way that
A11 ≥ A12 ≥ . . . ≥ A1k. Since u1 is a unit vector and {vj}j∈[k] is a set of orthonormal
vectors, we have

∑
j 〈u1,vj〉2 ≤ 1. Hence, 〈u1,vj〉2 ≤ 1/j and therefore A1j ≤ (1/j)t/2.

On the other, every entry of A is at most 2−t/2, since all pairs (i, j) with 〈ui,vj〉2 > 1/2
participate in the matching M , and hence, Aij = 0 for all i, j with 〈ui,vj〉2 > 1/2. It
follows that the sum of the first row can be upper bounded by

∑

j∈[k]

A1j ≤ A11 +
∞∑

j≥2

(1
j )t/2 ≤ 2−t/2 +

∞∑

j≥2

(1
j )t/2 = O(2−t/2).
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We conclude that the largest singular value of A is at most O(2−t/2), and thus ρ(u, v) can
be upper bounded by δ/2 + O(2−t/2) = 1

2 ‖Vu −Vv‖+ O(2−t/2), as claimed. ¤

3.4.4 Stronger relaxations

In this section, we consider stronger SDP relaxations for Unique Games and for
Sparsest Cut. A systematic way to obtain stronger relaxations is provided by SDP hier-
archies. We choose to state our results in terms of Lasserre’s SDP hierarchy [Las01,Lau03].
The results in this section apply only to a special case of Unique Games, called ΓMAX2LIN.
We say a Unique Games instance U = (G(V, E), [k], {πuv}(u,v)∈E) has ΓMAX2LIN form,
if the label set [k] can be identified with the group Zk in such a way that every constraint
permutation πuv satisfies πuv(i + s) = πuv(i) + s ∈ Zk for all s, i ∈ Zk. In other words,
πuv encodes a constraint of the form xu − xv = cuv ∈ Zk. The ΓMAX2LIN property implies
that we can find an optimal SDP solution {ui}i∈[k] for U that is shift-invariant, i.e., for all
s ∈ Zk we have 〈ui+s,vj+s〉 = 〈ui,vj〉. In particular, every vector ui has unit norm.

Alternative Embedding for ΓMAX2LIN. The following lemma can be seen as alterna-
tive to Lemma 40. We emphasize that the lemma only holds for ΓMAX2LIN instances and
shift-invariant SDP solutions.

Lemma 48 Let Λopt be a labeling for U with val(Λopt) = 1 − ε. Then the set of vectors
{Vu}u∈V with Vu = uΛopt(u) has the following two properties:

1. ρ(u, v) ≤ 1
2 ‖Vu −Vv‖2 for every pair u, v of vertices

2. 1
2E(u,v)∈E ‖Vu −Vv‖2 ≤ ε + 2ε

Together with Lemma 39, the above lemma implies that the randomized rounding procedure
R computes a labeling that satisfies at least a 1−O(ε/λ) fraction of the constraints of U ,
whenever opt(U) ≥ 1− ε. In this sense, the above lemma allows to prove the main result of
this paper for the special case of ΓMAX2LIN.
Proof: Item 1 holds, since, by shift invariance,

ρ(u, v) = 1
2Ei∈[k]

∥∥ui − vσuv(i)

∥∥2 = 1
2

∥∥uΛopt(u) − vσuv(Λopt(u))

∥∥2

≤ 1
2

∥∥uΛopt(u) − vΛopt(v)

∥∥2
.

Here we could assume, again by shift invariance, that
∥∥ui − vσuv(i)

∥∥2 = minj ‖ui − vj‖2 for
all i.

It remains to verify Item 2. By shift invariance,

εuv = 1
2Ei∈[k]

∥∥ui − vπuv(i)

∥∥2 = 1
2

∥∥uΛopt(u) − vπuv(Λopt(u))

∥∥2
.

Hence, if Λopt satisfies the constraint on an edge (u, v) ∈ E, then 1
2 ‖Vu −Vv‖2 = εuv. On

the other hand, 1
2 ‖Vu −Vv‖2 ≤ 2 because every vector Vu has unit norm. Finally, since a
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1− ε fraction of the edges is satisfied by Λopt,

E(u,v)∈E
1
2
‖Vu −Vv‖2 ≤ (1− ε) ·E(u,v)∈E [ εuv ] + ε · 2.

¤

Stronger Relaxations for Sparsest Cut. Let r be a positive integer. Denote by I the
set of all subsets of V that have cardinality at most r. For every subset I ∈ I, we have
a variable xI . We consider a strengthening of the spectral relaxation for Sparsest Cut
(Figure 3.3).

Minimize
E(u,v)∈E ‖zu − zv‖2

Eu,v∈V ‖zu − zv‖2
(3.17)

Subject to

∀ I, J ∈ I, ∀ I ′, J ′ ∈ I 〈xI ,xJ〉 = 〈xI′ ,xJ ′〉 (3.18)
if I ∪ J = I ′ ∪ J ′

∀ u ∈ V, ∀ i ∈ [k] x{u} = zu (3.19)

‖x∅‖2 = 1 (3.20)

Figure 3.3: Stronger relaxation for Sparsest Cut.

The variables xI are intended to have values 0 or 1, where 1 is some fixed unit
vector. If the intended cut is (S, S), we would assign 1 to all variables x{u} = zu with
u ∈ S. The variables xI are relaxations of boolean variables xI . The intended value of xI

is the product of the variables xt, t ∈ I.
Let zr(G) denote the optimal value of the SDP in Figure 3.3. We have

λ ≤ z1(G) ≤ . . . ≤ zn(G) = n2

|E| min
∅6=S⊂V

|E(S, §)|
|S||§| .

It can also be seen that the relaxation z3(G) is at least as strong as the relaxation for
Sparsest Cut considered in [ARV04]. The relaxations zr(G) are inspired by Lasserre’s
SDP hierarchy [Las01,Lau03].

The proof of the following theorem is similar to the proof of Theorem 42. The
main difference is that we use Lemma 48, instead of Lemma 40, in order to show that local
correlation implies global correlation. By strengthening the SDP for Unique Games, the
vectors Vu obtained from Lemma 48 can be extended to a solution for the stronger SDP for
Sparsest Cut in Figure 3.3. This allows us to replace the parameter λ by the parameter
zr(G) in the below theorem.

Theorem 49 There is an algorithm that computes in time (kn)O(r) a labeling Λ with

val(Λ) ≥ 1−O(ε/zr(G))
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if opt(U) ≥ 1− ε and U has ΓMAX2LIN form.

3.5 Parallel Repetition for Expanding Unique Games

In this section, we consider bipartite unique games, i.e., Unique Games instances
U = (G(V, W,E), [k], {πvw}(v,w)∈E) such that G(V,W,E) is a bipartite graph with bipar-
tition (V, W ). A bipartite unique game can be seen as a 2-prover, 1-round proof sys-
tem [FL92]. The two parts V, W correspond to the two provers. The edge set E corresponds
to the set of questions asked by the verifier to the two provers and πvw is the accepting
predicate for the question corresponding to the edge (v, w).

In this section, we give an upper bound on the amortized value ω(U) =
supr opt(U⊗r)1/r of bipartite unique game U in terms of the expansion of its constraint
graph. Here U⊗r denotes the game obtained by playing the game U for r rounds in parallel.
We follow an approach proposed by Feige and Lovász [FL92]. Their approach is based on
the SDP in Figure 3.4, which is a relaxation for the value of a bipartite unique game. Let
σ(U) denote the value of this SDP relaxation. The following theorem is a consequence of
the fact σ(U⊗r) = σ(U)r.

Theorem 50 ( [FL92]) For every bipartite unique game U , ω(U) ≤ σ(U).

We observe that the SDP in Figure 3.2 cannot be much stronger than the relaxation σ(U).
The proof mostly uses standard arguments.

Lemma 51 If σ(U) = 1− ε then the value of the SDP in Figure
reffig:SDPtwo is at least 1− 2ε.

Maximize E(v,w)∈EEi∈[k]

〈
vi,wπvw(i)

〉
(3.21)

Subject to

∀ v ∈ V, w ∈ W, i, j ∈ [k] 〈vi,wj〉 ≥ 0 (3.22)
∀ v ∈ V, v′ ∈ V

∑
i,i′

∣∣〈vi,v′i′〉
∣∣ ≤ k (3.23)

∀ w ∈ W, w′ ∈ W
∑

j,j′

∣∣∣〈wj ,w′
j′〉

∣∣∣ ≤ k (3.24)

Figure 3.4: Feige-Lovasz SDP for Unique Games

Theorem 52 If U is 2-prover 1-round unique game on alphabet [k] with value at most 1−ε,
then the value U played in parallel for r rounds is at most (1 − Ω(ε · λ/ log 1

ε ))r, where G
is the graph corresponding to the questions to the two provers. In particular, the amortized
value w(U) is at most 1− Ω(ε · λ/ log 1

ε ).

Proof: Following the approach in [FL92], it is sufficient to show σ(U) ≤ 1−Ω(ελ/ log 1
ε ).

Suppose that σ(U) = 1 − ε. Then by Lemma 51, the value of the SDP in Figure 3.2 is at
least 1− 2ε. By Theorem 42, it follows that opt(U) ≥ 1−O(ε log λ

ε /λ). On the other hand,
opt(U) ≤ 1− ε. Hence, ε = O(ε log λ

ε /λ) and therefore ε = Ω(λε log 1
ε ), as claimed. ¤
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3.6 Conclusion and Future Directions

Resolving the Unique Games conjecture is perhaps one of the most notorious and
important open problems in complexity theory. However, it is shown that any semidefinite
programming approach is doomed to fail in the general case, since there are integrality gap
instances where the value of the SDP deviates a lot from the value of the game ( [KV],
[DKSV]). The following important question comes up:

Question 53 Is there a polynomial time spectral algorithm that finds a highly satisfying
assignment in case there exists one, for the general case of Unique Games?

Even without aiming at resolving the Conjecture, there are several interesting
questions to be asked: What are other cases of constraint graphs where we can design an
efficient algorithm like in the expander case? For example, could we come up with such an
algorithm for hypercube graphs or quotients of them?
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Chapter 4

Subgraph Sparsification and
Applications

In this chapter we consider a variation of the spectral sparsification problem where
we are required to keep a subgraph of the original graph. Formally, given a union of two
weighted graphs G and W and an integer k, we are asked to find a k-edge weighted graph
Wk such that G+Wk is a good spectral sparsifer of G+W . We will refer to this problem as
the subgraph (spectral) sparsification. We present a nontrivial condition on G and W such
that a good sparsifier exists and give a polynomial time algorithm to find the sparsifer.

As a significant application of our technique, we show that for each positive integer
k, every n-vertex weighted graph has an (n − 1 + k)-edge spectral sparsifier with relative
condition number at most n

k log n Õ(log log n) where Õ() hides lower order terms. Our
bound is within a factor of Õ(log log n) from optimal. This nearly settles a question left
open by Spielman and Teng about ultrasparsifiers, which is a key component in their nearly
linear-time algorithms for solving diagonally dominant symmetric linear systems.

We also present another application of our technique to spectral optimization in
which the goal is to maximize the algebraic connectivity of a graph (e.g. turn it into an
expander) with a limited number of edges.

The chapter is organized as follows. In section 4.2, we give a deterministic polyno-
mial time algorithm for constructing W ′. The algorithm follows the lines of [BSS]and relies
heavily on algebraic techniques. In sections 4.4 and 4.3 we give two significant applications
of the ”subgraph sparsification” result. In section 4.3, we show how to use the above result
in order to construct nearly-optimal ultrasparsifiers for every graph. In section 4.4, we ap-
ply the result to the problem of finding k edges to add to a graph G in order to maximize its
algebraic connectivity. In [Gos] the problem was proved to be APX-Hard and the question
of finding an approximation algorithm for it has been heavily studied in the past. We give
two approximation algorithms for it that use the results of section 4.2 and which, in several
interesting cases, have very good performance guarantee.
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4.1 Notation and Preliminaries

Graph Sparsifiers. A sparsifier of a graph G = (V,E, w) is a d-sparse graph H that is
similar to G in some useful way. (We say that a graph is d-sparse if it has at most dn edges).
Many notions of similarity have been considered. For example, Chew’s [Che] spanners have
the property that the distance between every pair of vertices in H is approximately the same
as in G. Benczur and Karger’s [BKa] cut-sparsifiers have the property that the weight of the
boundary of every set of vertices is approximately the same in G as in H. We will mainly be
interested in the spectral notion of similarity introduced by Spielman and Teng [ST], [ST08]:
we say that H is a κ-approximation of G if for all x ∈ RV ,

xTLGx ≤ xTLHx ≤ κxTLGx (4.1)

where LG and LH are the Laplacian matrices of G and H.
Equivalently, for such H ⊆ G we will use the notation H ¹ G ¹ κH to imply that

equation 4.1 holds.
In the case where G is the complete graph, excellent spectral sparsifiers are supplied

by Ramanujan Graphs [LPS88], [Mar88]. These are d-regular graphs H all of whose non-
zero Laplacian eigenvalues lie between d − 2

√
d− 1 and d + 2

√
d− 1. Thus, if we take a

Ramanujan graph on n vertices and multiply the weight of every edge by n/(d− 2
√

d− 1),
we obtain a graph that d+2

√
d−1

d−2
√

d−1
-approximates the complete graphs

In [BSS] the authors showed that every graph can be approximated at least this
well by a graph with only twice as many edges. Namely, they showed that

Theorem 54 For every d > 1, every undirected graph G = (V, E,w) on n vertices contains
a weighted subgraph H = (V, F, w̃) with dd(n − 1)e edges (i.e. average degree at most 2d)
that satisfies:

xTLGx ≤ xTLHx ≤ d + 2
√

d− 1
d− 2

√
d− 1

· xTLGx

Ultrasparsifiers. We say that a graph is k-ultra-sparse if it has at most n-1+k edges.
We note that a spanning tree is 0-ultra-sparse.

An ultra-sparsifier of a graph G = (V,E, w) is a d-sparse graph U ⊆ G that
approximates G in some useful way. In this chapter, we will use the notion of ultrasparsifiers
as it appears in [ST]. Namely, U is a (κ, N)- ultrasparsifier of G if it has the following
properties

• U ¹ G ¹ κ · U

• U has less than n− 1 + N edges.

4.2 Matrix Sparsifiers

In this section, we prove an analog of the sparsification theorem of Batson, Spiel-
man, and Srivastava [BSS].
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Definition 55 (Graph Patch) Let G be a (weighted) graph. A graph W on the vertices
of G is a (k, T, λ∗)-patch for G if the following properties hold1,

1. λk+1(LGL†G+W ) ≡ λk+1((L†G+W )1/2LG(L†G+W )1/2) ≥ λ∗;

2. tr(LWL†G+W ) ≤ T .

We prove that for every patch, there exists a “patch sparsifier” supported on O(k)
edges. Specifically, we prove the following theorem.

Claim 56 Let W = (V, EW , {we}e∈EW
) be a (k, T, λ∗)-patch for G with edge weights we

and N ≥ 8k. Then there is a weighted graph Wk = (V, EWk
, {w̃e}e∈EWk

) with edge weights
w̃e such that

1. Wk has at most N edges; EWk
⊆ EW .

2. c1 min(N/T, 1)λ∗LG+W ¹ LG+Wk
¹ c2LG+W , for some absolute constants c1 and c2.

3. The total weight of edges,
∑

e∈EWk
w̃k, is at most min(1, N/T )

∑
e∈EW

we.

We say that Wk is a patch sparsifier of W with respect to G.

The claim will follow immediately from the following theorem, which is is of in-
dependent interest. We will also show another (related) application of this theorem in
Section 4.4.

Theorem 57 Suppose we are given a positive definite n × n matrix X and a sequence of
matrices Yi = viv

T
i (i = 1, . . . , m) with

X +
m∑

i=1

Yi = M∗,

and λmax(M∗) ≤ 1. Additionaly, suppose each matrix Yi has cost costi and
∑m

i=1 costi = 1.
Let λ∗ = λk+1(X), and T = dtr(M∗ − X)e. Then for every N > 8k there exists a set of
weights wi with |{wi : wi 6= 0}| = N such that the matrix M = X +

∑m
i=1 wiYi satisfies,

c1 min(N/T, 1) · λ∗ · λmin(M∗) ≤ λmin(M) ≤ λmax(M) ≤ c2,

where c1 and c2 are some absolute constants, and
∑m

i=1 wicosti ≤ min(1, N/T ).

Proof Overview. Our proof closely follows the approach of Batson, Spielman, and Sri-
vastava [BSS]. We construct matrix M in N steps; at each step we choose an index i and
weight wi and add wiYi to the sum X +

∑m
i=1 wiYi. Recall that Batson, Spielman, and

Srivastava define two “barriers” l and u and maintain the property that all eigenvalues of
M lie between l and u. At each step, they increase l and u and update matrix M so that

1we have λk+1(LGL†G+W ) = λk+1((L†G+W )1/2LG(L†G+W )1/2), since λi(AB) = λi(BA) for every two
square matrices A and B
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this property still holds. Finally, the ratio between u and l becomes very close to 1, which
means that λmin(M) is very close to λmax(M). During this process, they keep track not only
of the smallest and largest eigenvalues of M but of all n eigenvalues to avoid accumulation
of eigenvalues in neighborhoods of l and u. To this end, they define two potential func-
tions, the lower potential function Φl(M) =

∑n
i=1

1
λi(M)−l and the upper potential function

Φu(M) =
∑n

i=1
1

u−λi(M) , and then ensure that Φl(M) and Φu(M) do not increase over time.
That guarantees that all eigenvalues of M stay far away from l and u.

In our proof, however, we cannot keep an eye on all eigenvalues. After each
step, only one eigenvalue increases, and thus we need θ(n) steps to increase all eigenvalues
participating in the definition of Φl(M). But our goal is to “patch” X in roughly k steps.
So we focus our attention only on k smallest and T largest eigenvalues.

Let S be the eigenspace of X corresponding to k smallest eigenvalues, and PS be
the projection onto S. We define the lower potential function as follows,

Φl(A) = tr(PS(A− lI)PS)† =
k∑

i=1

1
λi(A|S)− l

,

where A|S denotes the restriction of A to the space S (A|S is a k × k matrix). Note that
the space S is fixed, and the eigenvector corresponding to the smallest eigenvalue will not
necessarily lie in S after a few steps. We want to ensure that after N steps,

m∑

i=1

wiYi

∣∣
S
º c min(N/T, 1)

m∑

i=1

Yi

∣∣
S

= cmin(N/T, 1)(M∗ −X)
∣∣
S
,

or in other words, λmin((Z(
∑m

i=1 wiYi)Z)|S) ≥ cmin(N/T, 1), where Z =(
(PS(M∗ −X)PS)†

)1/2. To this end, we show how to update M and l so that
Φl(Z(

∑m
i=1 wiYi)Z) does not increase, and l equals cmin(N/T, 1) after N steps. It re-

mains to lower bound λmin(M) in the entire space. We know that all eigenvalues of X (and
therefore, of M) in S⊥ are at least λ∗. We show that that together with an upper bound
on λmax(M) implies that λmin(M) ≥ c1 min(N/T, 1) ·λ∗λmin(M∗) (the product of the lower
bounds on λmin in spaces S and S⊥ divided by the upper bound on λmax).

Similarly, we amend the definition of the upper potential function. Since we need
to bound λmax in the entire space, we cannot restrict Φu(M) to a fixed subspace. For
a matrix A, we consider the eigenspace of A corresponding to its largest T eigenvalues.
Denote it by LA(A); denote the projection onto L(A) by PL(A). Then

Φu(A) = tr(PL(A)(uI −A)−1PL(A)) = tr(PL(A)(uI −A)PL(A))
† =

N∑

i=n−T+1

1
u− λi(A)

.

Note that both definitions of Φu(A) — in terms of regular inverse and in terms of pseu-
doinverse — are equivalent since L(A) is an invariant subspace of A. However, Φl(A) is not
equal to tr(PS(A − lI)−1PS) in general since S is not necessarily an invariant subspace of
A.
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Our algorithm and analysis are similar to those of Batson, Spielman, and Srivas-
tava [BSS]. However, several complications arise because we are controlling eigenvalues in
different subspaces and, moreover, one of these subspaces, L(A), is not fixed.

Let us summarize the proof. We construct the matrix M iteratively in N steps.
Let A(q) be the matrix and w

(q)
i be the weights after q steps. We define an auxiliary matrix

B(q) as Z(A(q) −X)Z. We have,

A(q) = X +
∑

i

w
(q)
i Yi; B(q) =

∑

i

w
(q)
i ZYiZ = Z(A(q) −X)Z.

We will ensure that the following properties hold after each step (for some values of constants
l0, δL, u0, δU , εL, εU , which we will specify later).

1. Φl0(B
(0)) ≤ εL and Φu0(A(0)) ≤ εU .

2. Each matrix A(q) and B(q) is obtained by a rank-one update of the previous one:

A(q+1) = A(q) + tYi, B(q+1) = B(q) + tZYiZ

for some i.

3. Lower and upper potentials do not increase. Namely, for every q = 0, 1, . . . , N ,

Φu0+(q+1)δU (A(q+1)) ≤ Φu0+qδU (A(q)) ≤ εU and Φl+(q+1)δL
(B(q+1)) ≤ Φl0+qδL

(B(q)) ≤ εL.

4. At each step q, λmin(B(q)
∣∣
S
) > l ≡ l0 + qδL and λmax(A(q)) < u ≡ u0 + qδU . In

particular, this condition ensures that all terms in the definitions of upper and lower
potentials are positive.

5. At each step q, the total cost is at at most q/ max(N,T ):
∑

w
(q)
i costi ≤ q/ max(N, T ).

We present the complete proof in Sections 4.2.2 and 4.2.3. In Section 4.2.2,
we first find conditions under which we can update A(q) and u (Lemma 64), and B(q)

and l (Lemma 65). Then we show that both conditions can be simultaneously satisfied
(Lemma 66). In Section 4.2.1, we prove several theorems that we need later to deal with
a non-fixed subspace L(A). Finally, in Section 4.2.3, we combine all pieces of the proof
together.

4.2.1 Some Basic Facts about Matrices

Sherman–Morrison Formula

We use the Sherman–Morrison Formula, which describes the behavior of the inverse
of a matrix under rank-one updates. We first state the formula for regular inverse [GL96],
and then we show that a similar expression holds for the pseudoinverse.
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Lemma 58 (Sherman–Morrison Formula) If A is a nonsingular n×n matrix and Y =
vvT is a rank-one update, then

(A + Y )−1 = A−1 − A−1Y A−1

1 + A−1 • Y

Lemma 59 If A is a symmetric (possibly singular) n × n matrix, Y = vvT is a rank-one
update, then

(A + PY P )† = A† − A†Y A†

1 + A† • Y
,

where P is the orthogonal projection on Im(A).

Proof: Let v = Pv and Y = PY P = vvT . Note that A†Y A† = A†Y A†, since PA† = P ,
and

A† • Y = trA†Y = trA†(PY P ) = tr(PA†P )Y = A† • Y.

We need to verify that

(A + Y )
(

A† − A†Y A†

1 + A† • Y

)
=

(
A† − A†Y A†

1 + A† • Y

)
(A + Y ) = P.

Since A is a symmetric matrix, AA† = A†A = P . Since P 2 = P , PY P = Y and Y A†Y =
vvT AvvT = v(A • Y )vT = (A • Y )Y . We calculate,

(A + Y )
(

A† − A†Y A†

1 + A† • Y

)
= AA† + Y A† − P

Y A† + Y A†Y A†
1 + A† • Y

= P + Y A† − (1 + A† • Y )Y A†

1 + A† • Y
= P + Y A† − Y A† = P.

Similarly,

(A† − A†Y A†

1 + A† • Y
)(A + Y ) = P.

¤

Majorization

Lemma 60 (Majorization) For every positive semidefinite matrix A, every projection ma-
trix P , and every r ∈ {1, . . . , n}

n∑

i=n−r+1

λi(A) ≥
n∑

i=n−r+1

λi(PAP ). (4.2)

In particular, λmax(A) ≥ λmax(PAP ).

Proof: Let e1, . . . , en be an orthonormal eigenbasis of A so that ei has eigenvalue λi(A).
Similarly, let ẽ1, . . . , ẽn be an orthonormal eigenbasis of PAP so that ẽi has eigenvalue
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λi(PAP ). Write

ẽi =
n∑

j=1

〈ej , ẽi〉ej .

Note that if λi(PAP ) 6= 0 then ẽi ∈ Im(PAP ) ⊆ Im(P ) and P ẽi = ẽi. Then

λi(PAP ) = ẽT
i PAP ẽi = ẽiAẽi =

n∑

j=1

〈ej , ẽi〉2λj(A).

If λi(PAP ) = 0 then trivially

λi(PAP ) = 0 ≤
n∑

j=1

〈ej , ẽi〉2λj(A).

Therefore,

n∑

i=n−r+1

λi(PAP ) ≤
n∑

i=n−r+1

n∑

j=1

〈ej , ẽi〉2λj(A) =
n∑

j=1

(
n∑

i=n−r+1

〈ej , ẽi〉2
)

λj(A).

That is,
∑n

i=n−r+1 λj(PAP ) is at most the sum of λj(A) with weights
∑n

i=n−r+1〈ej , ẽi〉2.
The total weight of all λ1(A), . . . , λn(A) is r:

n∑

i=n−r+1

n∑

j=1

〈ej , ẽi〉2

︸ ︷︷ ︸
‖ẽi‖2

=
n∑

i=n−r+1

‖ẽi‖2 = r.

The weight of each eigenvalue λj(A) in the sum is at most 1:

n∑

i=n−r+1

〈ej , ẽi〉2 ≤
n∑

i=1

〈ej , ẽi〉2 = 1.

Therefore, the sum does not exceed the sum of the r largest eigenvalues
∑n

i=n−r+1 λr(A).
¤

Corollary 61 For every positive semidefinite matrix A, every projection matrix P and
u > λmax(A), the following inequality holds.

Φu(PAP ) =
n∑

i=n−T+1

1
u− λi(PAP )

≤
n∑

i=n−T+1

1
u− λi(A)

= Φu(A) (4.3)

Proof: The statement follows from the Karamata Majorization Inequality. The inequality
claims that for every two non-increasing sequences that satisfy (4.2) and for every increasing
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convex function f ,
n∑

i=n−k+1

f(λi(A)) ≥
n∑

i=n−k+1

f(λi(PAP )).

Plugging in f(x) = 1
u−x (defined on (0, u)), we obtain the desired inequality. ¤

Lemma 62 Let A be a positive semidefinite matrix such that A ¹ In. Assume Tr(A) ≤
r ∈ N. Then for every positive semidefinite matrix M , A •M ≤ ∑N

i=N−r+1 λi(M).

Proof: By von Neumann’s inequality [Mir], A •M = tr(AM) ≤ ∑n
i=1 λi(A)λi(M). Since∑n

i=1 λi(A) ≤ r and all λi(A) ≤ 1, we can easily see that the above product achieves its
maximum when the largest r eigenvalues of A are 1 and the rest are 0. In this case, we
have, A •M ≤ ∑n

i=1 λi(A)λi(M) =
∑n

i=n−r+1 λi(M). ¤

As a corollary we get the following result.

Corollary 63 Let X, M∗ and T be as in Theorem 57. Then for any positive semidefinite
matrix U , we have U • (M∗ −X) ≤ ∑n

i=n−T+1 λi(U).

4.2.2 Barrier Shifts

In this section, we analyze how we can update matrices A(q) and B(q), and incre-
ment barriers l and r so that the upper and lower potentials do not increase. Let us think of
Φu(A) as a function of an n2 dimensional vector (consisting of entries of A). Then in the first
approximation Φu+δU (A+tY ) ≈ Φu+δU (A)+tY •U , where U is the gradient of Φu+δU at A (U
is an n×n matrix). Thus the potential function does not increase, Φu+δU (A+tY ) ≤ Φu(A),
roughly when tY • U

Φu(A)−Φu+δU (A)
≤ 1. Similarly, Φl+δL

(B + tY ) ≤ Φl(B), roughly when

tY • L
Φl+δL

(B)−Φl(B) ≥ 1, where L is the gradient of Φl+δL
at B. Following [BSS], we

make these statements precise (we need to take into account lower order terms). We define
matrices UA and LB,

UA =
((u + δU )I −A)−2

Φu(A)− Φu+δU (A)
+ ((u + δU )I −A)−1;

LB =
(PS(B − (l + δL)I)PS)†2

Φl+δL
(B)− Φl(B)

− (PS(B − (l + δL)I)PS)†

Lemma 64 (Upper Barrier Shift) Suppose λmax(A) < u and Y = vvT is a rank-one update.
If UA • Y ≤ 1

t then Φu+δU (A + tY ) ≤ Φu(A) and λmax(A + tY ) < u + δU .
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Proof: Let u′ = u + δU and P = PL(A+tY ). By the Sherman–Morrison formula (Lemma
(58)), we can write the updated potential as:

Φu+δU (A + tY ) = trP (u′I −A− tY )−1P = trP

(
(u′I −A)−1 +

t(u′I −A)−1Y (u′I −A)−1

1− t(u′I −A)−1 • Y

)
P

= trP (u′I −A)−1P + tr
tP (u′I −A)−1Y (u′I −A)−1P

1− t(u′I −A)−1 • Y

≤ Φu+δU (PAP ) +
t(u′I −A)−2 • Y

1− t(u′I −A)−1 • Y

≤ Φu+δU (A) +
t(u′I −A)−2 • Y

1− t(u′I −A)−1 • Y

= Φu(A)− (Φu(A)− Φu+δU (A)) +
(u′I −A)−2 • Y

1/t− (u′I −A)−1 • Y

Here, we used Corollary 61 for the inequality on line 4.
Substituting UA • Y ≤ 1/t gives Φu+δU (A + tY ) ≤ Φu(A). The statement about

λmax follows from continuity of eigenvalues. ¤

Lemma 65 (Lower Barrier Shift) Suppose λmin(B|S) > l + δL and Y = vvT is a rank-one
update. If LB • Y ≥ 1/t then Φl+δL

(B + tY ) ≤ Φl(B) and λmin((B + tY )|S) > l + δL.

Proof: We proceed as in the proof for the upper potential. Let l′ = l + δL and P = PS .
By the Sherman–Morrison formula for the pseudoinverse (Lemma 59), we have:

Φl+δL
(B + tY ) = tr(P (B + tY − l′I)P )† = tr(P (B − l′I)P + tPY P )†

= tr(P (B − l′I)P )† − t tr((P (B − l′I)P )†Y (P (B − l′I)P )†)
1 + t(P (B − l′I)P )† • Y

= Φl(B) + (Φl+δL
(B)− Φl(B))− t(P (B − l′I)P )†2 • Y

1 + t(P (B − l′I)P )† • Y

Note that matrix UA is positive semidefinite. Rearranging shows that Φl+δL
(B + Y ) ≤

Φl(B) when LA(π) ≥ 1/t. It is immediate that λmin(PS(A + tππT )PS) > l + δL since
λmin(PSAPS) > l + δL. ¤

Now we prove that we can choose Yi and t so that conditions of both lemmas are
satisfied.

Lemma 66 (Both Barriers) If Φu(A) ≤ εU and Φl(B) ≤ εL and εU , εL, δU , δL satisfy

0 ≤ 1
δU

+ εU + max(N, T ) ≤ 1
δL
− εL,

and X, Yi, costi, Z, T and N as in Theorem 57, M∗ −X is non-singular on S, then there
exists i and positive t for which

LB • (ZYiZ) ≥ 1/t ≥ UA • Yi, and (4.4)
costi · t ≤ 1/max(N, T ). (4.5)
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We will use the following lemma

Lemma 67
∑m

i=1 UA • Yi ≤ 1
δU

+ εU and
∑m

i=1 LB • (ZYiZ) ≥ 1
δL
− εL.

Proof: 1. We use Corollary 63 to bound the Frobenius product of Yi with each of the two
summands in the definition of UA (note that they are positive semidefinite), we get

m∑

i=1

UA • Yi = UA •
m∑

i=1

Yi = UA • (M∗ −X)

=
((u + δU )I −A)−2

Φu(A)− Φu+δU (A)
• (M∗ −X) + ((u + δU )I −A)−1 • (M∗ −X)

≤
n∑

i=n−T+1

λi

(
((u + δU )I −A)−2

Φu(A)− Φu+δU (A)

)
+

n∑

i=n−T+1

λi

(
((u + δU )I −A)−1

)

=

∑n
i=n−T+1

1
(u+δU−λi(A))2

Φu(A)− Φu+δU (A)
+

n∑

i=n−T+1

1
(u + δU )− λi(A)

Note that the first term is at most 1/δU , since

n∑

i=n−T+1

1
(u + δU − λi(A))2

≤
n∑

i=n−T+1

1
(u− λi(A))(u + δU − λi(A))

=
1
δU

n∑

i=n−T+1

(
1

u− λi(A)
− 1

(u + δU )− λi(A)

)
=

Φu(A)− Φu+δU (A)
δU

and the second term equals Φu+δU (A). Thus
∑m

i=1 UA • Yi ≤ εU + 1/δU .
2. Let P be the projection on Im(M∗−X). Since (M∗−X) is non-singular on S, PPS = PS .
We have,

m∑

i=1

LB • ZYiZ = LB •
m∑

i=1

ZYiZ = LB • Z(M∗ −X)Z = LB • P

= tr
(

(PS(B − (l + δL)I)PS)†2

Φl+δL
(B)− Φl(B)

− (PS(B − (l + δL)I)PS)†
)

=

∑k
i=1

1
(λi(B|S)−(l+δL))2

Φl+δL
(B)− Φl(B)

−
k∑

i=1

1
λi(B|S)− (l + δL)

≥ 1/δL − εL,

where the last line follows from Claim 3.6 in [BSS].
¤

Proof:(Of Lemma 66) For the previous lemma, we get:
∑m

i=1(UA •Yi +max(N,T )costi) ≤
1

δU
+εU +max(N, T ) ≤ LB•(ZYiZ). Thus for some i, UA•Yi+max(N, T )costi ≤ LB•(ZYiZ).

Letting t = (LB • (ZYiZ))−1, we satisfy (4.4) and (4.5). ¤
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4.2.3 Proof of Theorem 57

Now we are ready to prove Theorem 57. We assume that M∗ −X is non-singular
on S (which we can ensure by an arbitrary small pertrubation).

We start with A(0) = X, B(0) = 0 and all weights w
(0)
i = 0. We define parameters

as follows,

δL = 1/(2 max(N, T )), εL = 1/(4δL), l0 = −4kδL,

δU = 4δL, εU = 1/(4δL), u0 = 4TδL + 1,

so as to satisfy conditions of Lemma 66, Φu(A(0)) = Φu(X) =
∑T

i=1
1

u0−λn+1−i(X) ≤ T/(u0−
1) = εU , Φl(B(0)) =

∑k
i=1

1
0−l0

= −k/l0 = εL, 1/δU + εU + max(N,T ) = 3
2 max(N,T ) =

1/δL − εL. Then we iteratively apply Lemma 66. At iteration q, we find an index i and a
positive t such that LB(q)(ZYiZ) ≥ 1/t ≥ UA(q)(Yi), costi · t ≤ 1/max(N,T ), and increment
the weight of matrix Yi by t: w

(q+1)
i = w

(q)
i + t; update l = l + δL and u = u + δU . The

total cost increases by at most 1/max(N, T ). Finally, after N iterations we obtain matrices
A(N) and B(N) with

λmax(A(N)) ≤ u0 + NδU = 2(N + T )/max(N, T ) + 1 ≡ θmax

λmin(B(N)
∣∣
S
) ≥ l0 + NδL = (N/2− 2k)/max(N, T ) ≡ θmin.

Now consider an arbitrary unit vector v. Let v = vS + vS⊥ , where vS ∈ S and vS⊥ ⊥ S.
Since B(N) º θminPS and vS ∈ S,

vT
S A(N)vS = vT

S (X + (PS(M∗ −X)PS)1/2B(N)(PS(M∗ −X)PS)1/2)vS

≥ vT
S (X + (PS(M∗ −X)PS)1/2θminPS(PS(M∗ −X)PS)1/2)vS

= θminv
T
S M∗vS + (1− θmin)vT

S XvS ≥ θminλmin(M∗)‖vS‖2.

On the other hand, vT
S⊥A(N)vS⊥ ≤ θmax‖vS⊥‖. Thus from the triangle inequality for the

norm induced by A(N), we get

(vT A(N)v)1/2 ≥ θ
1/2
minλmin(M)1/2‖vS‖−θ1/2

max‖vS⊥‖ ≥ θ
1/2
minλmin(M)1/2−(θ1/2

max+θ
1/2
minλmin(M)1/2)‖vS⊥‖.

On the other hand, since S is an eigenspace of X corresponding to k smallest eigenvalues,

(vT A(N)v)1/2 ≥ (vT Xv)1/2 ≥ (vT
S⊥XvS⊥)1/2 ≥ λ∗1/2‖vS⊥‖.

One of the two bounds above for (vT A(N)v)1/2 increases and the other decreases as

‖vS⊥‖ increases. They are equal when ‖vS⊥‖ = θ
1/2
minλmin(M∗)1/2

λ∗1/2+θ
1/2
max+θ

1/2
minλmin(M∗)1/2

. Therefore,
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(vT A(N)v)1/2 ≥ θ
1/2
minλ∗1/2λmin(M∗)1/2

λ∗1/2+θ
1/2
max+θ

1/2
minλmin(M∗)1/2

. We conclude that

λmin(A(N)) = min
v:‖v‖=1

vT A(N)v ≥ θminλ
∗λmin(M∗)(

λ∗1/2 + θ
1/2
max + θ

1/2
minλmin(M∗)1/2

)2 .

Plugging in the values of parameters, we get the statement of the theorem for M = A(N).
The total cost is at most N/max(N, T ) = min(1, N/T ).

Finally, we prove Claim 56. Proof:[Claim 56] Let V = Im(LG+W ) = ker(LG+W )⊥. Let Le

be the Laplacian of the edge e. Define

X =
(
(L†G+W )1/2LG(L†G+W )1/2

) ∣∣∣
V

,

Ye = we

(
(L†G+W )1/2Le(L†G+W )1/2

) ∣∣∣
V

,

coste = we/
(∑

d∈EW

wd

)
.

Since LG +
∑m

e∈EW
weLe = LG+W , we have X +

∑
e∈EW

Ye = I. By the definition of the
(k, T, λ∗)-patch, tr(I −X) ≤ T and λ∗ ≤ λk+1(X). We apply Theorem 57 to matrices X,
Ye and M∗ = I. We obtain a set of weights ρe — supported on at most N edges — such
that

c1 min(N/T, 1) · λ∗ ≤ λmin

(
X +

∑
e∈EW

ρeYe

)
≤ λmax

(
X +

∑
e∈EW

ρeYe

)
≤ c2,

Let w̃e = ρewe. Weights w̃i define subgraph Wk with at most N edges. It follows that

c1 min(N/T, 1)λ∗LG+W ¹ LG+Wk
¹ c2LG+W .

The total weight of edges of Wk is
∑

e∈EW
ρewe = (

∑
e∈EW

ρecoste)
∑

d∈EW
wd ≤

min(1, N/T )
∑

d∈EW
wd. ¤

4.3 Constructing Nearly-Optimal Ultrasparsifiers

We now apply our subgraph sparsification to build ultrasparsifiers. Recall that a
weighted graph U is a (κ, k)-ultrasparsifier of another graph G if U ¹ G ¹ κ ·U and U has
only n− 1+ k edges, where n is the number of vertices in U and G. The main result of this
section is the following theorem.

Theorem 68 For any integer k > 0, every graph has an (n
k log n Õ(log log n), k)–

ultrasparsifier.

Our basic idea to build a good ultrasparsifier U is quite simple. Without loss of
generality, we can assume that G is connected and has O(n) edges. Otherwise given a graph
G, we can first find a linear size sparsifier using [BSS], for each of its connected components,
and build a good ultrasparsifier for each component. Because U is only k edges aways from
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a tree, our construction starts with good tree T . As it will be much more clear below,
the quality of a tree is measured by its stretch, as introduced by Alon, Karp, Peleg and
West [AKPW95].

Suppose T is a spanning tree of G = (V,E, w). For any edge e ∈ E, let e1, · · · , ek ∈
F be the edges on the unique path in T connecting the endpoints of e. The stretch of e
w.r.t. T is given by stT (e) = w(e)(

∑k
i=1

1
w(ei)

). The stretch of the graph G with respect
to T is defined by stT (G) =

∑
e∈E stT (e). Our construction will start with a spanning tree

with the lowest possible stretch. By [ABN], we can in polynomial time grow a spanning
tree T with

stT (G) = O(n log n log log n(log log log n)3).

Remark 2 For the sake of simplicity of the presentation, we will show the construction of
ultrasparsifiers with Θ(k) edges. We note that by choosing the appropriate constants, the
number of edges can be made exactly k.

Let κ = c1 · stT (G)/k for a sufficiently large constant c1. Our job is to choose Θ(k) more
weighted edges W̃ and set U = T +W̃ such that c2 ·U ¹ G ¹ κ ·U , for a constant c2. To this
end, let W = (1/(c3κ)) ·G, for some constant c3. Then, G = c3κ ·W ¹ c3κ · (W +T ). Also,
because T ¹ G, we have T + W ¹ (1 + 1/(c3κ))G ¹ c4 · G, for a constant c4. Therefore,
if we can find a Θ(k)–edge subgraph W̃ of W such that T + W̃ ¹ Θ(1) · (T + W ), we can
then build a n− 1+Θ(k) edge graph U = T + W̃ satisfying c2 ·U ¹ G ¹ κ ·U (if we choose
our constants ci’s carefully).

To apply our subgraph sparsification results to construct W̃ , we use the following
structure result of Spielman and Woo ( [SW]: Theorem 2.1 and Corollary 2.2).

Lemma 69 (Theorem 2.1 in [SW]) (1) Tr(L†T
1/2LGL†T

1/2
) = stT (G). (2) For every t > 0,

the number of eigenvalues of L†T
1/2LGL†T

1/2
greater than t is at most stT (G)/t.

We now use Lemma 69 to prove the following lemma, from which Theorem 68
follows directly.

Lemma 70 W is a (k,O(k), Θ(1))–patch for T .

Proof: Let λi = λi((L†T+W )1/2LT (L†T+W )1/2) be the i-th eigenvalue, and yi be the corre-

sponding eigenvector. Let xi = L
1/2
T+W yi. Then,

λi = λi((L†T+W )1/2LT (L†T+W )1/2) =
xT

i LT xi

xT
i LT xi + xT

i LW xi
=

xT
i LT xi

xT
i LT xi + xT

i LGxi/(c3κ)
,

implying

xT
i LGxi

xT
i LT xi

=
1− λi

λi
c3κ =

(
1− λi

λi

)
c3c1

stT (G)
k

=
stT (G)
k

c1c3
λi

1−λi

It follows from the definition of λi that 0 ≤ λi < 1. Hence, (1− λi−1)/λi−1 ≥ (1 − λi)/λi.
By Courant—Fischer theorem and the property 2 of Lemma 69, we have k ≤ k

c1c3

λk+1

1−λk+1
.

Therefore, λk+1 ≥ c1c3
1+c1c3

= Θ(1). We also have,



CHAPTER 4. SUBGRAPH SPARSIFICATION AND APPLICATIONS 61

tr
(
(L†T+W )1/2LW (L†T+W )1/2

)
≤ tr

(
(L†T )1/2LW (L†T )1/2

)
=

1
c3κ

tr
(
(L†T )1/2LG(L†T )1/2

)

≤ k

c3c1stT (G)
stT (G) =

k

c3c1
= Θ(k).

We proved that W is a (k, O(k), Θ(1))–patch for T . ¤

We next show that the parameters of the ultrasparsifiers we obtained are optimal,
up to low order terms.

Theorem 71 Let G be a Ramanujan d-regular expander graph, for some constant d. Let
U a (κ, N) ultrasparsifier for G. Then κ ≥ n

N log n.

Proof: Let T be a low-stretch spanning tree of G, as above. As mentioned in [ABN],
stT (G) = Ω(m log n) where m is the number of edges of the original graph. From lemma
69, and the conditions on the stretch of T we have Tr(LGLT

†) = stT (G) ≥ C · n log n for
some constant C.

Since xTLGx = Θ(1) for the expander, the above inequality implies that∑n
i=1

1
xTLT x

≥ n log n where xi are the eigenvectors of LG(LT )†. It is immediate from

Markov’s inequality that there exists some k such that xk
TLT xk ≤ C1k

n log n . Assume that for
all i ≤ k we have xi

TLT xi ≤ xk
TLT xk ≤ C1k

n log n . (Otherwise take k′ < k appropriately).
Then also λk(LT ) ≤ C1k

n log n . By the minmax theorem for eigenvalues this implies that adding
N = k − 2 edges to T will result to a graph U with λ2(LU ) ≤ λk(LT ) ≤ C1k

n log n . Thus any
ultrasparsifier U with N edges will have

C2 = λ2(LG) ≤ κλ2(LU ) ≤ C1k

n log n
⇒ κ ≥ Ω(

n log n

k
) = Ω(

n log n

N
)

¤

4.4 Maximizing Algebraic Connectivity by Adding few edges

In this section, we present an approximation algorithm for the following problem:
given a graph G = (V, Ebase), a set of candidate edges Ecand, and a parameter k, add at
most k candidate edges to G so as to maximize its algebraic connectivity, that is, find
a subset E ⊂ Ecand that maximizes λ2(LG+E). The problem was introduced by Ghosh
and Boyd [BG06], who presented a heuristic for it. It is known that the problem is NP-
hard [MA08]. But prior to this work, no approximation algorithm was known for it.

We use two upper bounds for the cost of the combinatorial solution in order to
prove an approximation guarantee: one upper bound is the SDP value, λSDP , and the other
is λk+2(LG) (see Lemma 72). Note that neither of these two bounds are good approximations
for the value of the optimum solution by themselves (for instance, if G consists of n isolated
vertices, (V, Ecand) is an expander, k < n, then the value of the combinatorial solution is
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0 but λSDP ∼ k/n), but their combinations lead to a good upper bound for the optimum
solution λOPT .

For clarity and simplicity of exposition, we assume here that (V, Ebase) and
(V, Ecand) are bounded degree graphs with the maximum degree ∆. Our algorithm uses
a natural semidefinite relaxation that was also used by Ghosh and Boyd [BG06]. We in-
troduce a variable we (the weight of the edge e) for each candidate edge e ∈ Ecand; add
constraints that all edge weights are between 0 and 1, and the total weight is at most k.
Then we require that λ2(LG +

∑
e weLe) ≥ λSDP (where Le is the Laplacian of the edge e).

We do that by adding an SDP constraint LG +
∑

e weLe º λSDP P(1,...,1)⊥ , where P(1,...,1)⊥ is
the projection on the space orthogonal to (1, . . . , 1)⊥. We get the following SDP relaxation.

maximize: λSDP ,

subject to: LG +
∑

e∈Ecand

weLe º λSDP · P(1,...,1)⊥ ,

∑

e∈Ecand

we ≤ k,

0 ≤ we ≤ 1 for every e ∈ Ecand.

We solve the semidefinite program and obtain solution {we}e∈Ecand
. The total

weight of all edges is k, however, the number of edges involved, or the support of the
solution could be significantly higher than k.

We use our algorithm to sparsify the SDP solution using Theorem 57. More
precisely, we apply Theorem 57 with X = LG/(4∆) and Ye = wiLe/(4∆) restricted to the
space (1, . . . , 1)⊥, N = 8k, T = tr(

∑
e weLe)/(4∆) ≤ k and costi = wi (we divide LG and

Le by 4∆ to ensure that λmax(X +
∑

e Yi) ≤ 1). We get a set of weights ρe supported on
at most 8k edges s.t.

1
4∆

λ2(LG+
∑

e

ρeweLe) = λmin(X+
∑

e

ρeYe) ≥ cλk+2(X)λmin(X+
∑

e

Ye) ≥ c
1

(4∆)2
λk+2(LG)λSDP .

That is, we obtain a combinatorial weighted solution w̃e = ρiwi whose value is at least
cλk+2(LG)λSDP /(4∆) (if k + 2 > n, the value is at least cλSDP ). We next show that
λSDP ≥ λOPT and λk+2(G) ≥ λOPT . Therefore, the value of the solution is at least
cλ2

OPT /∆.

Lemma 72 The value of the optimal solution, λOPT , is at most λk+2(LG).

Proof: Consider the optimal solution E. Let LE be the Laplacian of the graph
formed by E. Note that rank(LE) ≤ |E| ≤ k, therefore, dim kerLE ≥ n − k. Let
S be the k + 1-dimensional space spanned by the eigenvectors of LG corresponding to
λ2(LG), . . . , λk+2(LG). Since dimS + dim kerE > n, spaces S and kerLE have a non-
trivial intersection. Choose a unit vector v ∈ kerS ∩ LE . We have v(LG + LE)vT ≤
λk+2(LG) + 0 = λk+2(LG). Also v is orthogonal to the vector (1, . . . , 1)⊥. Therefore,
λOPT = λ2(LG + LE) ≤ λk+2(LG). ¤
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The edges in the support of w̃e, E = {w̃e : w̃e 6= 0}, form a non-weighted combina-
torial solution. Since λmax(LX +

∑
e w̃eLe) = O(∆), all weights w̃e are bounded by O(∆),

and thus the algebraic connectivity of G + E is at least cλk+2(LG)λSDP /∆2.

Theorem 73 There is a polynomial time approximation algorithm that finds a solution of
value at least cλ2

OPT /∆ supported on at most 8k edges with total weight at most k. If k ≥ n
the algorithm finds a constant factor approximation.

We present two corollaries for special instances of the problem.

Corollary 74 If it is possible to make G an expander by adding k edges (and thus λOPT ∼
∆), then the algorithm finds a constant factor approximation.

Note that if the graph formed by candidate edges is an expander then the value of the
following SDP solution we = k/|Ecand| for each edge e ∈ Ecand is Ω(k/n), thus λSDP ≥ ck/n.

Corollary 75 If the graph formed by candidate edges is an expander, then the approxima-
tion algorithm from Theorem 73 finds a solution of value at least c k

n∆λOPT .

Remark 3 It is possible to get rid of the dependence on ∆ in Theorem 73 and Corollary 75
and obtain approximation guarantees of c min(λOPT , λ2

OPT ) and ck
n λOPT respectively. We

omit the details in this extended abstract.

4.5 Open Problems

We believe that there is a constant factor approximation algorithm for optimizing
the algebraic connectivity as in section 4.4. We also believe that there is an almost linear
time algorithm for constructing sparsifiers, patch sparsifiers and ultrasparsifiers.
Another important direction is to examine what other graph quantities can be approxi-
mated by replacing the original graph with a sparse one. For example, can one construct
“sparsifier” that approximate vertex expansion? What about sparsifiers for directed graphs?
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Chapter 5

Sparsest Cut on Quotients of the
Hypercube

In this chapter, we present a simple construction and analysis of an Ω(log log N)
integrality gap for the well-known Sparsest Cut semi-definite program (SDP). This holds for
the uniform demands version (i.e. edge expansion). The same quantitative gap was proved
earlier by Devanur, Khot, Saket, and Vishnoi [STOC 2006], following an integrality gap for
non-uniform demands due to Khot and Vishnoi [FOCS 2005]. These previous constructions
involve a complicated SDP solution and analysis, while our gap instance, vector solution,
and analysis are somewhat simpler and more intuitive.

Furthermore, our approach is rather general, and provides a variety of different
gap examples derived from quotients of the hypercube. It also illustrates why the lower
bound is stuck at Ω(log log N), and why new ideas are needed in order to derive stronger
examples.

5.1 Preliminaries

We first discuss some preliminary notions and theorems that will be used through-
out the paper.
Asymptotic notation. For expressions A and B, we will use the notation A . B to
denote A = O(B), and A ≈ B to denote the conjunction of A . B and A & B.

Sparsity of graphs. We will consider undirected graphs G = (V, E) where every edge
(u, v) has a non-negative weight w(u, v). For any subset E′ ⊆ E of edges, we write w(E′) =∑

e∈E′ w(e). For two sets S, T ⊆ V , we write E(S, T ) for the set of edges with one endpoint
in S and one in T .

For a subset S ⊆ V , we use

Φ(S) =
w(E(S, S))
|S||S|

to denote the sparsity of S. We then write Φ(G) = minS⊆V Φ(S) for the sparsest cut value
of G.
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We will be particularly interested in graphs derived from the (unweighted) n-
dimensional hypercube Qn =

{
−1√

n
, 1√

n

}n
. We will use Qn to denote the set of vertices

in the n-cube, and E(Qn) to denote the set of edges. The classical discrete isoperimetric
inequality shows that if we write Si = {x ∈ Qn : xi < 0}, then for every i ∈ [n],

Φ(Qn) = Φ(Si) =
4|E(Si, Si)|
|Qn|2 ≈ |Qn|−1.

A well-known theorem of Kahn, Kalai, and Linial [KKL98] then asserts the fol-
lowing.

Theorem 76 (KKL Theorem) For any S ⊆ Qn, there exists an i ∈ [n] for which

|E(S, S) ∩ E(Si, Si)|
|S||S| & log n

n
Φ(Qn).

Weighted “quotients” of the cube. Let Γ be any group acting on [n] = {1, 2, . . . , n} by
permutations. We can naturally extend Γ to act on Qn via π(x1, . . . , xn) = (xπ(1), . . . , xπ(n))
for any π ∈ Γ. For an element u ∈ Qn, we use Γu to denote the Γ-orbit of u. We refer to a
subset S ⊆ Qn as Γ-invariant if ΓS = S.

We define a weighted graph Qn/Γ as follows. The vertices are simply those of Qn,
and the edges are E(Qn) ∪ E′, where E′ = {(u, v) : u ∈ Γv}. We define

w(e) =

{
1 e ∈ E(Qn)
22n e ∈ E′.

The point of this choice is to ensure that Φ(Qn/Γ) = Φ(S) is always achieved by a Γ-
invariant set S, since separating any Γ-orbit involves cutting an edge of very large value.
(Note that, because we are only using weights which are polynomial in the graph size, our
gap examples can easily be made unweighted.)

We recall that Γ is said to act transitively on [n] if for every i, j ∈ [n], there exists
a permutation π ∈ Γ with π(i) = j. From Theorem 76, one can easily derive the following.

Theorem 77 (Transitive actions) If Γ acts transitively on [n], then Φ(Qn/Γ) &
Φ(Qn) log n.

Proof: We know that Φ(Qn/Γ) = Φ(S) for some Γ-invariant set S. By Theorem 76, there
exists an i ∈ [n] for which

|E(S, S) ∩ E(Si, Si)|
|S||S| & log n

n
Φ(Qn).

But for any other j ∈ [n], there exists an action π ∈ Γ with π(i) = j, hence

|E(π(S), π(S)) ∩ E(Sj , Sj)|
|π(S)||π(S)| =

|E(S, S) ∩ E(Si, Si)|
|S||S| ,
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implying that

Φ(S) =
n∑

j=1

|E(S, S) ∩ E(Sj , Sj)|
|S||S| = n · |E(S, S) ∩ E(Si, Si)|

|S||S| & Φ(Qn) log n.

¤

The Sparsest Cut SDP. Given a weighted graph G = (V, E), we recall the standard SDP
relaxation of Sparsest Cut,

SDP(G) = min

{∑
uv∈E w(u, v)‖xu − xv‖2

∑
u,v∈V ‖xu − xv‖2

: ‖xu − xv‖2 ≤ ‖xu − xw‖2 + ‖xw − xv‖2 ∀u, v, w ∈ V

}
,

where the minimum is taken over all choices of vectors {xu}u∈V lying in some finite-
dimensional Euclidean space. It is well-known that SDP(Qn) = Φ(Qn) ≈ |Qn|−1.

We say that a vector solution {xu}u∈Qn is Γ-invariant if xu = xπ(u) for all u ∈ Qn

and π ∈ Γ. Observe that a Γ-invariant solution for the Sparsest Cut SDP on Qn/Γ has
value ∑

uv∈E(Qn) ‖xu − xv‖2

∑
u,v∈Qn

‖xu − xv‖2
,

since all elements of a Γ-orbit are mapped to the same vector.

Weak triangle inequalities and pseudometrics. For the sake of exposition, we will
also define an “SDP value” for solutions satisfying a weak form of the triangle inequalities.
We recall that for any set X, a non-negative, symmetric function d : V × V → R is called
a pseudometric on V if it satisfies the triangle inequalities, i.e. d(u, v) ≤ d(u,w) + d(w, v)
for all u, v, w ∈ V , and additionally d(u, u) = 0 for all u ∈ V .

For any β ≥ 1, let

SDPβ(G) = min

{∑
uv∈E w(u, v)‖xu − xv‖2

∑
u,v∈V ‖xu − xv‖2

: d(u, v) ≤ ‖xu − xv‖2 ≤ βd(u, v)

}
,

where the minimum is over all choices of vectors {xu}u∈V , and additionally over all pseu-
dometrics d on V . Observe that SDP(G) = SDP1(G). One might also note that the
Arora-Rao-Vazirani algorithm [ARV04], and all known analyses derived from it, only use
the weaker SDPO(1) inequalities.

Tensoring. We recall that for two vectors x, y ∈ Rk and t ∈ N, we have the tensored
vectors x⊗t, y⊗t ∈ Rkt

which satisfy 〈x⊗t, y⊗t〉 = 〈x, y〉t.
Finally, we need the following tail inequality.

Lemma 78 (Hoeffding bound) Let X1, X2, . . . , Xn be independent random variables
with EXi = 0 for every i ∈ [n]. Then,

Pr

[∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ L

]
≤ 2 exp

( −L2

2
∑n

i=1 ‖Xi‖2∞

)
.
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5.2 A simple example: Cyclic shifts

Consider the cyclic shift operator σ : [n] → [n] defined by σ(i) = (i + 1) mod n,
and let Γ = {σ0, σ1, . . . , σn−1} be the group of permutations generated by σ. By Theorem
77, we have Φ(Qn/Γ) & Φ(Qn) log n. On the other hand, we will now show that the
“weak” SDP value of Qn/Γ is approximately SDP(Qn), thus exhibiting a (weak) SDP gap
of Ω(log n) = Ω(log log |Qn|). This will illustrate the main ideas behind our proof for general
quotients, and the true SDP value will be analyzed in the next section.

Theorem 79 For n ∈ N, SDP16(Qn/Γ) . SDP(Qn).

Proof: For every u ∈ Qn, we define the vector

xu =
1√
n

n−1∑

i=0

(σiu)⊗8,

and put x̃u = xu/‖xu‖. Observe that

〈xu, xv〉 =
1
n

n−1∑

i,j=0

|〈σiu, σjv〉|8 =
n−1∑

i=0

|〈u, σiv〉|8. (5.1)

We now define a subset of “pseudorandom” vertices of Qn whose orbits under Γ are not too
self-correlated,

P =

{
u ∈ Qn :

n−1∑

i=0

|〈u, σiu〉|6 ≤ 1 +
1
4n

}
.

Note that, by Cauchy-Schwarz, for u, v ∈ P, we have

n−1∑

i=0

|〈u, σiv〉|6 ≤
√√√√

n−1∑

i=0

|〈u, σiu〉|6
√√√√

n−1∑

i=0

|〈v, σiv〉|6 ≤ 1 +
1
4n

. (5.2)

(To see this, observe that
∑n−1

i=0 |〈u, σiv〉|6 is an inner product, as in (5.1).)

Most vertices are pseudorandom. For any u ∈ Qn, we can write

〈u, σu〉 =
∑

1≤i≤n
i even

uiuσ(i) +
∑

1≤i≤n
i odd

uiuσ(i) = T + T ′,

where each ui appears exactly once in each of the sums T and T ′. It is easy to see that a
similar decomposition holds for 〈u, σiu〉 for any i ∈ {1, 2, . . . , n− 1}.

Therefore by Lemma 78, we have

Pru∈Qn

[|〈u, σiu〉| ≥ 2t/
√

n
] ≤ Pr

[|T | ≥ t/
√

n
]
+ Pr

[|T ′| ≥ t/
√

n
] ≤ 4e−t2/2, (5.3)



CHAPTER 5. SPARSEST CUT ON QUOTIENTS OF THE HYPERCUBE 68

since each of T and T ′ is a sum of i.i.d. uniform elements of {± 1
n}. Setting t = n1/3/2 and

taking a union bound over i = 1, 2, . . . , n− 1 yields

Pru∈Qn

[
n−1∑

i=0

|〈u, σiv〉|6 > 1 +
1
4n

]
≤ 4ne−n2/3/8 ≤ n−2, (5.4)

for n sufficiently large, hence |P| ≥ |Qn|(1− n−2).

The SDP value. Fix some u0 ∈ P. Our final SDP solution will consist of the vectors
{x′u}u∈Qn with x′u = x̃u for u ∈ P and x′u = x̃u0 otherwise. Thus we will only need to verify
the weak triangle inequalities for {x̃u}u∈P . It is clear that our proposed SDP solution is
Γ-invariant.

For an edge (u, v) ∈ E(Qn), using (5.1), we have

〈xu, xv〉 ≥ |〈u, v〉|8 =
(

1− 2
n

)8

≥ 1− 16
n

.

Hence for u, v ∈ P with (u, v) ∈ E(Qn), we have ‖x̃u − x̃v‖2 = O(1/n). In particular,

∑

(u,v)∈E(Qn)

‖x′u − x′v‖2 . |E(Qn)|
n

+ 4|E(Qn \ P)| . |E(Qn)|
n

, (5.5)

since |Qn \ P| ≤ |Qn|/n2.

On the other hand, if we choose u, v ∈ Qn at random, then for any i ∈ [n], using
Lemma 78,

Pru,v∈Qn

[|〈u, σiv〉| ≥ t/
√

n
] ≤ 2e−t2/2.

Setting t ≈ √
log n and taking a union bound over all i ∈ [n] shows that for n sufficiently

large, Pru,v∈Qn [|〈xu, xv〉| ≥ 1
4 ] ≤ 1

2 . In particular,

∑

u,v∈Qn

‖x′u − x′v‖2 ≥
∑

u,v∈P
‖x̃u − x̃v‖2 ≈

∑

u,v∈P
‖xu − xv‖2 & |P|2 & |Qn|2.

Combining the preceding line with (5.5) shows that the value of the potential SDP solution
{x′u}u∈Qn is O(|Qn|−1) = O(SDP(Qn)).

Verifying the weak triangle inequalities. We are thus left to verify the weak triangle
inequalities for {x̃u}u∈P . To this end, we will define a cyclic shift-invariant metric d on Qn

and then show that for u, v ∈ P, we have d(u, v) ≈ ‖x̃u − x̃v‖2.

Let λ(u, v) = max{|〈u, σiv〉| : i ∈ [n]} and put d(u, v) = 1 − λ(u, v)8. It is clear
that d(u, v) = d(σu, v) = d(u, σv). Next, observe that for any u, v, w ∈ Qn, we have

1 + 〈u, v〉 ≥ 〈u,w〉+ 〈v, w〉,
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since the inequality 1 + xy ≥ xz + yz for x, y, z ∈ {−1, 1} is straightforward to verify.
Observing that u⊗8, v⊗8, w⊗8 ∈ Qn8 , it follows that

1 + |〈u, v〉|8 ≥ |〈u,w〉|8 + |〈v, w〉|8. (5.6)

Now suppose that i, j ∈ N are such that λ(u,w) = |〈σiu,w〉| and λ(v, w) = |〈σjv, w〉|. In
that case, we have

1 + λ(u, v)8 ≥ 1 + |〈σiu, σjv〉|8
≥ |〈σiu,w〉|8 + |〈σjv, w〉|8
= λ(u,w)8 + λ(v, w)8,

where the second inequality is simply (5.6). Rearranging shows that the preceding inequality
is precisely d(u, v) ≤ d(u,w) + d(v, w), i.e. that d satisfies the triangle inequality.

We are thus left to show that 1−λ(u, v)8 ≈ 1−〈x̃u, x̃v〉 for u, v ∈ P. If λ(u, v) = 1,
then both expressions are 0, so we may assume that λ(u, v) 6= 1. One direction is easy:
Using the fact that if λ(u, v) 6= 1, then λ(u, v)8 ≤ λ(u, v) ≤ 1− 2

n , we have

1− 〈x̃u, x̃v〉 ≤ 1− (1 + 1
4n)−1〈xu, xv〉

≤ 1− (1 + 1
4n)−1λ(u, v)8

≤ 1− (1− 1
4n)λ(u, v)8

≤ 2
[
1− λ(u, v)8

]
.

Now, the key to satisfying the (weak) triangle inequalities is the following simple
calculation:

〈x̃u, x̃v〉 ≤ 〈xu, xv〉 =
n−1∑

i=0

|〈u, σiv〉|8 ≤ λ(u, v)2
n−1∑

i=0

|〈u, σiv〉|6 ≤ (1 + 1
4n)λ(u, v)2,

where in the last inequality, we have used u, v ∈ P. Thus assuming 〈x̃u, x̃v〉 = 1− δ, we get

λ(u, v)8 ≥
(

(1− δ)
(

1− 1
4n

))4

≥ 1− 4
(

δ +
1
4n

)
,

but λ(u, v) ≤ 1 − 2
n , hence δ ≥ 1

4n so that λ(u, v)8 ≥ 1 − 8δ, implying 1 − λ(u, v)8 ≤
8(1− 〈x̃u, x̃v〉). ¤

5.3 General quotients

In the present section, we derive SDP solutions for “pseudorandom” subsets of gen-
eral quotient constructions. Unlike the previous section, we will ensure that these solutions
satisfy the full triangle inequalities.
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5.3.1 Metrics and kernels

Fix a subgroup Γ acting on [n] by permutations. We let ψΓ = max {|Γu| : u ∈ Qn}
be the maximum size of any Γ-orbit. For u, v ∈ Qn, we define

λ(u, v) = max
π∈Γ

|〈u, πv〉|,

and for every t ∈ N,
αt(u, v) =

∑

π∈Γ

|〈u, πv〉|2t,

and
αt(u, v) =

αt(u, v)√
αt(u, u)αt(v, v)

.

Finally, we define two distance functions on Qn corresponding to λ and αt, respec-
tively. For s, t ∈ N, define

ρs,t(u, v) = 1−
(

1
2

+
1
2
λ(u, v)2t

)s

Ks,t(u, v) = 1−
(

1
2

+
1
2
αt(u, v)

)s

.

Lemma 80 For every t ∈ N, both αt and αt are positive semi-definite kernels on Qn. For
every s ∈ N, the same is true for (u, v) 7→ (

1
2 + 1

2αt(u, v)
)s.

Proof: If we define f : Qn → Rn2t
by f(u) = |Γ|−1/2

∑
π∈Γ(πu)⊗2t then αt(u, v) =

〈f(u), f(v)〉 and αt(u, v) =
〈

f(u)
‖f(u)‖2 , f(v)

‖f(v)‖2

〉
. For the final implication, note that the sum

of two PSD kernels is PSD, and also a positive integer power of a PSD kernel is PSD. ¤

From Lemma 80 and the fact that 0 ≤ αt(u, v) ≤ 1 for all u, v ∈ Qn, one verifies
that Ks,t is a negative-definite kernel on Qn, i.e. there exists a system of (unit) vectors
{xu}u∈Qn such that ‖xu − xv‖2 = Ks,t(u, v).

It is clear that both functions ρs,t and Ks,t are Γ-invariant in both coordinates. We
will now show that ρs,t is a metric. In Section 5.3.2, we will show that Ks,t(u, v) ≈ ρs,t(u, v)
for “pseudorandom” u, v ∈ Qn. This will motivate our analysis of the metrical properties
of Ks,t in Section 5.4.

Lemma 81 If 0 ≤ a ≤ b ≤ c ≤ 1 and 1+a ≥ b+c, then for any r ≥ 1, ar−br−cr ≥ a−b−c.
In particular, for any a, b, c ∈ [0, 1], 1 + a ≥ b + c implies 1 + ar ≥ br + cr.

Proof: We may assume that a 6= 1. In this case, write b and c as a convex combination
of a and 1 as follows: b = 1−b

1−aa + (1− 1−b
1−a) and c = 1−c

1−aa + (1− 1−c
1−a). Now, using the fact

that x− xr is concave for x ∈ [0, 1] and r ≥ 1, write

(b− br) + (c− cr) ≥ 1− b

1− a
(a− ar) +

1− c

1− a
(a− ar) ≥ 2− b− c

1− a
(a− ar) ≥ a− ar,
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where the final inequality follows from 1 + a ≥ b + c. To verify the second claim of the
lemma, note that if a > b or a > c, then 1 + ar ≥ br + cr holds trivially. ¤

Corollary 82 Let X be any set, U : X × X → [0, 1], and s ≥ 1. If D′(x, y) = 1 − (1
2 +

1
2U(x, y))s is a pseudometric on X, then so is D(x, y) = 1− (1

2 + 1
2U(x, y))s′ for any s′ ≥ s.

Proof: The triangle inequality for D on x, y, z ∈ X reduces to verifying

1 + (1
2 + 1

2U(x, y))s′ ≥ (1
2 + 1

2U(x, z))s′ + (1
2 + 1

2U(y, z))s′ .

Since s′ ≥ s, Lemma 81 implies that this reduces to the triangle inequality for D′. ¤

Lemma 83 For every s, t ∈ N, ρs,t is a pseudometric on Qn.

Proof: By Corollary 82, it suffices to prove this for ρ1,t. It’s clear that for any u ∈ Qn,
ρ1,t(u, u) = 0 because λ(u, u) = 1. Now fix u, v, w ∈ Qn. The triangle inequality ρ1,t(u, v) ≤
ρ1,t(u,w) + ρ1,t(v, w) reduces to verifying

1 + λ(u, v)2t ≥ λ(u, w)2t + λ(v, w)2t. (5.7)

Suppose that λ(u,w) = |〈πu,w〉| and λ(v, w) = |〈v, π′w〉|. Then,

λ(u, v)2t ≥ |〈πu, π′v〉|2t

≥ |〈πu,w〉|2t + |〈π′v, w〉|2t − 1 (5.8)
= λ(u, w)2t + λ(v, w)2t − 1,

where (5.8) follows just as in (5.6). ¤
Before turning to the precise relationship between Ks,t and ρs,t, we calculate

ρs,t(u, v) for edges and for random pairs in Qn.

Lemma 84 (Edges) If u, v ∈ E(Qn), then ρs,t(u, v) ≤ 2st
n .

Proof: Observe that

λ(u, v)2t ≥
(

1− 2
n

)2t

≥ 1− 4t

n
,

hence ρs,t(u, v) ≤ 1− (1− 2t
n )s ≤ 2st

n . ¤
The next lemma is a straightforward application of Lemma 78 and a union bound.

Lemma 85 (Random pairs) Suppose that u, v ∈ Qn are chosen independently and uni-
formly at random. Then,

Pr
[
λ(u, v)2t ≥ L

] ≤ 2ψG exp

(
−L1/tn

2

)
.

In particular, for any s, t ∈ N, if ψΓ ≤ 20.1n, then

Pr[ρs,t(u, v) ≥ 1
4 ] ≥ Pr[λ(u, v)2t ≤ 1

2 ] ≥ 1
2 .
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5.3.2 Pseudorandom orbits and ρs,t ≈ Ks,t

For r ∈ N, define

Pr(η) = {u ∈ Qn : αr(u, u) ≤ 1 + η}

as the set of all elements whose Γ-orbits are not too self-correlated. Note that, by Cauchy-
Schwarz, u, v ∈ Pr(η) implies αr(u, v) ≤

√
αr(u, u) αr(v, v) ≤ 1 + η.

The next lemma is central. It says that if αt(u, v) is large and u, v are pseudoran-
dom, then the contribution to αt(u, v) comes mainly from a single large “matching” term,
i.e. u is strongly correlated with some element of Γv.

Lemma 86 Let t > r and δ ∈ [0, 1]. If u, v ∈ Pr(η) and αt(u, v) ≥ 1− δ, then

λ(u, v)2(t−r) ≥ 1− δ − η.

Proof: We have,

αt(u, v) ≤ λ(u, v)2t−2r
∑

π∈Γ

|〈u, πv〉|2r = λ(u, v)2(t−r)αr(u, v) ≤ (1 + η)λ(u, v)2(t−r).

It follows that λ(u, v)2(t−r) ≥ 1−δ
1+η ≥ 1− δ − η. ¤

Theorem 87 (Weak triangle inequality for Ks,t) For every r, s ∈ N and u, v ∈
Pr( 1

4n),
ρs,2r(u, v) ≈ Ks,2r(u, v),

where the implicit constant is independent of the given parameters.

Proof: Let η = 1
4n and t = 2r, and suppose that u, v ∈ Pr(η). If λ(u, v) = 1, then

αt(u, v) = 1 as well, hence ρs,t(u, v) = Ks,t(u, v).
Now suppose that λ(u, v) 6= 1. In that case,

λ(u, v)2t ≤ (
1− 2

n

)2t ≤ 1− 2
n . (5.9)

Assume that αt(u, v) = 1 − δ for some δ ∈ [0, 1]. Then, αt(u, v) ≥ αt(u, v) ≥ 1 − δ, so
Lemma 86 implies that λ(u, v)2t ≥ (1− δ− η)2 ≥ 1− 2(δ + η), and from (5.9), we conclude
that δ ≥ 3

4n . This, in turn, implies that η ≤ δ/3, which gives λ(u, v)2t ≥ 1− 3δ.
Finally, we observe that

αt(u, v) ≥ (1− η)αt(u, v) ≥ (1− δ/3)αt(u, v) ≥ (1− δ/3)λ(u, v)2t,

hence λ(u, v)2t ≤ (1 − δ)(1 + δ/3) ≤ 1 − 2δ
3 . We have thus shown that 1 − λ(u, v)2t and

1− αt(u, v) are within an O(1) factor for all u, v ∈ Pr(η).¤

Verification of the full triangle inequalities occurs in Appendix 5.4.
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5.4 Triangle inequalities

In this section, we verify that K22,t is a pseudometric on Pr( 1
(4n)2

) for t = O(r).
In other words, the corresponding vectors form a valid SDP solution.

Theorem 88 For some t = O(r), K22,t is a pseudometric on Pr( 1
(4n)2

).

Proof: Let η = 1
(4n)2

, and fix u, v, w ∈ Pr(η). To prove triangle inequality for Ks,t, it
suffices to show that

1 + (1
2 + 1

2αt(u, v))s ≥ (1
2 + 1

2αt(u,w))s + (1
2 + 1

2αt(v, w))s.

If both αt(u,w), αt(v, w) ≤ 15
16 , then for s = 22, both terms are the right hand side are at

most 1
2 , and the inequality is trivially satisfied. So we assume that αt(u,w) ≥ 15

16 for the
remainder of the proof.

By Corollary 82, to prove triangle inequality for K22,t, it suffices to prove the same
inequality for K1,t or K2,t, i.e. one of the following inequalities.

3 + αt(u, v)[2 + αt(u, v)] ≥ αt(u,w)[2 + αt(u, w)] + αt(v, w)[2 + αt(v, w)]
1 + αt(u, v) ≥ αt(u,w) + αt(v, w).

Clearly both of these hold if λ(u,w) = 1 or if λ(w, v) = 1, so we assume this is not the case,
and we are left to prove one of the following.

3 + αt(u, v)[2 + αt(u, v)] ≥ αt(u,w)[2 + αt(u,w)] + αt(v, w)[2 + αt(v, w)] + 5η(5.10)
1 + αt(u, v) ≥ αt(u,w) + αt(v, w) + 2η, (5.11)

recalling that αt(u, v) ≤ αt(u, v) ≤ (1 + η)αt(u, v) for all u, v ∈ Pr(η). We remark that
this loss in η will be acceptable beacuse when two points u, v ∈ Qn are distinct, they have
|〈u, v〉| ≤ 1− 4

n , giving us ≈ 1
n slack when the orbits of u, v, and w are distinct.

Case I (Strong matching): λ(u,w), λ(v, w) ≥ 1− 1
2t .

Let λ(v, w) = 1 − δ, λ(u,w) = 1 − ε, and observe that λ(u, v) ≥ 1 − (δ + ε) by
(5.7). Also, since λ(u, w) 6= 1 and λ(w, v) 6= 1, we have δ, ε ≥ 4

n , and in particular η ≤ εδ.
We will verify (5.11). Write,

αt(v, w) ≤ (1− δ)2t +
(
αr(v, w)− (1− δ)2r

)t/r ≤ (1− δ)2t + (η + 2rδ)t/r, (5.12)

and similarly αt(u,w) ≤ (1− ε)2t + (η + 2rε)t/r.

Using the preceding inequalities, to prove (5.11), it suffices to show that

1 + (1− (δ + ε))2t − (1− δ)2t − (1− ε)2t ≥ (η + 2rδ)t/r + (η + 2rε)t/r + 5η. (5.13)
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But we have,

1 + (1− (δ + ε))2t − (1− δ)2t − (1− ε)2t =
2t∑

i=2

(−1)i

(
2t

i

) 


i−1∑

j=1

(
i

j

)
δjεi−j




≥ 2
(

2t

2

)
δε−

(
2t

3

)
3δε(δ + ε)

= t(2t− 1)δε ([1− 2(t− 1)δ] + [1− 2(t− 1)ε])

≥ 2t(2t− 1)δε
(

1− 2(t− 1)
2t

)

= (2t− 1)δε
≥ ((2r + 1)δ)t/r + ((2r + 1)ε)t/r + 5εδ,

where the final inequality holds for some t = O(r) chosen large enough. This proves (5.13),
recalling that η ≤ εδ.

Case II (Weak matching): λ(v, w) ≤ 1− 1
2t .

Suppose that αt(u,w) = 1− δ. Our aim is to prove (5.10), which we write as

2 (αt(v, w)− αt(u, v)) + (αt(v, w)− αt(u, v)) (αt(v, w) + αt(u, v)) ≤ δ(4− δ)− 2η. (5.14)

Note that since αt(u,w) ≥ 15
16 , we have δ ≤ 1

16 . Furthermore, by Lemma 86, we have
λ(u,w) ≥ 1 − δ+η

2(t−r) . In particular, for t = O(r) chosen large enough, we have λ(u, w) ≥
1− 1

2t , which explains why cases I and II are exhaustive.

Now, if αt(v, w) ≥ 0.65, then Lemma 86 implies λ(v, w) ≥ 1 − 0.35+η
2(t−r) ≥ 1 − 0.45

t

for t ≥ 2r, which contradicts our assumption. We conclude that αt(v, w) ≤ 0.65. In this
case, we may assume that αt(u, v) ≤ 0.7, since otherwise (5.11) is trivially satisfied, thus
we have αt(u, v), αt(v, w) ≤ 0.7.

The main idea in the “weak matching” case is to show that αt(u, v) & αt(v, w),
but we cannot rely on a single “matched pair” (i.e. the triangle inqualities for λ) to do this.
Instead, we argue that αt(u, v) receives a large contribution on average.

To this end, write λ(u,w) = 1−β, and let π0 ∈ Γ be such that |〈π0u,w〉| = λ(u,w).
Then,

αt(u, v) =
∑

π∈Γ

|〈π0u, πv〉|2t ≥
∑

π∈Γ

[max(0, |〈π0u,w〉|+ |〈w, πv〉| − 1)]2t ≥
∑

π∈Γ

[max(0, |〈w, πv〉| − β)]2t .

Let I = {π ∈ Γ : |〈w, πv〉| ≥ β}, and observe that
∑

π/∈I

|〈w, πv〉|2t ≤ β2t−2r
∑

π/∈I

|〈w, πv〉|2r ≤ β2(t−r)αr(w, v) ≤ β2(t−r)(1 + η).
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Therefore,

αt(u, v) ≥
∑

π∈I

(|〈w, πv〉| − β)2t

≥
∑

π∈I

|〈w, πv〉|2t

(
1− β

|〈w, πv〉|2t

)2t

≥
∑

π∈I

|〈w, πv〉|2t

(
1− 2βt

|〈w, πv〉|2t

)

≥
(∑

π∈Γ

|〈w, πv〉|2t

)
− (1 + η)

[
β2(t−r) − 2βt

]

≥ αt(w, v)− (1 + η)
[
δ2(t−r) − (δ + η)

t

t− r

]
.

Plugging this into (5.14) and using αt(u, v), αt(v, w) ≤ 0.7 yields,

3.4(1 + η)
(

δ2(t−r) + (δ + η)
t

t− r

)
≤ δ(4− δ2)− 2η.

Now, since λ(u,w) 6= 1, we have λ(u,w) ≤ 1 − 4
n , and using Lemma 86 gives δ ≥ 2t

n ; in
particular, η ≤ δ/16. Combining this with δ ≤ 1

16 , it suffices to prove

3.7
(

2δ2(t−r) + δ
t

t− r

)
≤ 3.8δ,

which certainly holds for some choice of t = O(r). ¤

5.4.1 Integrality gaps

We now discuss the consequences of Theorem 88 for integrality gaps.

Theorem 89 Let Γ be any group acting on [n] with ψΓ ≤ 20.1n. If |Pr( 1
(4n)2

)| ≥ |Qn|(1 −
n−2), then

SDP(Qn/Γ) ≤ O(r) SDP(Qn).

Proof: Let P = Pr( 1
(4n)2

). Let C ≥ 1 be such that K22,Cr is a pseudometric on P,
according to Theorem 88. By Lemma 80, K22,Cr is negative-definite kernel, i.e. there exists
a system of vectors {xu}u∈Qn such that ‖xu − xv‖2 = K22,Cr(u, v).

Fix some arbitrary u0 ∈ P. We define a new solution by

x′u =

{
xu u ∈ P
xu0 u /∈ P.

Certainly {x′u}u∈Qn is a Γ-invariant vector solution that satisfies the triangle inequalites.
We are left to compute the value of this solution.
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First, for (u, v) ∈ E(Qn) with u, v ∈ P, by Theorem 87 and Lemma 84, we have

‖xu − xv‖2 = K22,Cr(u, v) ≈ ρ22,Cr(u, v) = O(r/n).

Hence, ∑

uv∈E(Qn)

‖x′u − x′v‖2 . |E(Qn)| r
n

+ 4|E(Qn \ P)| . |E(Qn)| r
n

,

using |Qn \ P| ≤ |Qn|/n2.
On the other hand, using Theorem 87 and Lemma 85,
∑

u,v∈Qn

‖x′u − x′v‖2 ≥
∑

u,v∈P
K22,Cr(u, v) &

∑

u,v∈P
ρ22,Cr(u, v) & |P|2 & |Qn|2.

This verifies that SDP(Qn/Γ) ≤ O(r) SDP(Qn). ¤

Using this, we can recover the best-known integrality gap.

Corollary 90 If Γ = 〈σ〉 is the group generated by cyclic shifts, then SDP(Qn/Γ) .
SDP(Qn).

Proof: An argument similar to that of (5.4) shows that for n large enough and some
r = O(1), |Pr( 1

(4n)2
)| ≥ |Qn|(1− n−2). ¤

The problem with averaging over orbits. Of course, one might hope that using
techniques more sophisticated than Theorem 76, it is possible to find nice groups Γ for
which Φ(Qn/Γ) & f(n)Φ(Qn), where f(n) À log n. In this case, one could hope to derive
stronger integrality gaps. Indeed, Bourgain and Kalai [BKb] exhibit primitive permutation
groups Γ which yield such bounds. Unfortunately, the following lemma poses a problem.

Lemma 91 For any group Γ acting on [n], Φ(Qn/Γ) . Φ(Qn) log(n|Γ|).

Proof:[Proof sketch] Let k ∈ N and define Fk : Qn → {0, 1} by Fk(u) = 1 if there exist an
i ∈ [n] such that ui, ui+1, . . . , ui+k < 0. Let

Sk = {u ∈ Qn : Fk(v) = 1 for some v ∈ Γu} . (5.15)

It is clear that Sk is Γ-invariant. Now, there exists a k ≤ log(n|Γ|) such that
|Sk|/|Qn| ∈ [1/3, 2/3], since for a randomly chosen u ∈ Qn, a fixed sequence will sat-
isfy ui, ui+1, . . . , ui+k < 0 with probability 2−k, and there are at most n|Γ| such sequences
under consideration in (5.15).

By a standard analysis, a randomly chosen u ∈ Sk will, with high probability, have
only O(k) pivotal bits, implying that |E(u, Sk)| is typically O(k) = O(log(n|Γ|)), which
implies that |E(Sk, Sk)| ≤ O(log(n|Γ|))|Sk|, and yields Φ(Sk) ≤ O(log(n|Γ|))|Qn|−1 ≈
O(log(n|Γ|))Φ(Qn). ¤
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The preceding lemma is problematic, because in order for |Pr(1/n2)| to be almost
everything, one has to take r & log |Γ|

log n , This is because in a sum like

αt(u, v) =
∑

π∈Γ

|〈u, πv〉|2t

the terms not corresponding to π = id can generally only be expected to be of order
(n−1/2)2t = n−t, but there are possibly |Γ| of these terms, implying that we need t ≈ log |Γ|

log n
in order for these terms to have total magnitude o(1). In the next section, we discuss how
different vector solutions can be used with r = O(1) for a specific example with |Γ| ≈ 2nΩ(1)

.

5.5 Larger orbits: Permutations of the rows

In this section, we discuss m × n sign matrices with m = poly(n), where Γ in-
cludes all permutations of the rows, meaning that our previous SDP solutions would not
be adequate (as the orbits are now huge). Still, we give a (weak) SDP solution with
SDPO(1)(Qmn/Γ) ≈ SDP(Qn). Unfortunately, it is not difficult to see that Φ(Qmn/Γ) ≈
Φ(Qn) log n, meaning that we again achieve only an Ω(log log N) integrality gap. It is
possible that a hierarchical version of this construction could give larger gaps.

5.5.1 The metric

For every m,n ∈ N, let Xm,n =
(

1√
n
{−1, 1}n

)m
⊆ Rmn be the space of sequences

(A1, A2, . . . , Am) with each Ai ∈ {−1√
n
, 1√

n
}n. The symmetric group Sm acts in a natural

way on Xm,n: For π ∈ Sm, we have π(A) = π(A1, . . . , Am) = (Aπ(1), . . . , Aπ(m)). Let Xm,n

be the set of orbits of Xm,n under the Sm action. We define

λt(A,B) =
1
m

max
π:[m]→[m]

m∑

i=1

|〈Ai, Bπ(i)〉|2t,

where the maximum is over all bijections π.

Lemma 92 For any A,B, C ∈ Xm,n and any t ∈ N, we have

λt(A,B) ≥ λt(A,C) + λt(B,C)− 1.

Proof: Let π, π′ : [m] → [m] be such that λt(A,C) = 1
m

∑m
i=1 |〈Ai, Cπ(i)〉|2t and λt(B, C) =

1
m

∑m
i=1 |〈Bi, Cπ′(i)〉|2t. Then letting σ = (π′)−1 ◦ π, we have

λt(A,B) ≥ 1
m

m∑

i=1

|〈Ai, Bσ(i)〉|2t

≥ −1 +
1
m

m∑

i=1

|〈Ai, Cπ(i)〉|2t +
1
m

m∑

i=1

|〈Bσ(i), Cπ(i)〉|2t (5.16)

= −1 + λt(A,C) + λt(B, C).
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¤
Next we define, for every s, t ∈ N, the distance function ρs,t(A,B) = 1 − (1

2 +
1
2λt(A,B))s.

Claim 93 For every s, t ∈ N, ρs,t is a metric on Xm,n.

Proof: First, it’s clear that ρs,t(A,B) = ρs,t(πA, B) for all π ∈ Sm and A,B ∈ Xm,n.
Also, ρs,t(A,A) = 0 because λt(A,A) = 1.

Now, consider A,B,C ∈ Xm,n. The triangle inequality ρs,t(A,B) ≤ ρs,t(A,C) +
ρs,t(B,C) reduces to verifying

1 + (1
2 + 1

2λt(A,B))s ≥ (1
2 + 1

2λt(A, C))s + (1
2 + 1

2λt(B, C))s.

Write this as
1 + xs ≥ ys + zs. (5.17)

Then x, y, z ∈ [0, 1] since λt(A,B) ∈ [0, 1] for all A,B ∈ Xm,n. Combining this with the
fact that 1 + x ≥ y + z from Lemma 92, we conclude that (5.17) holds. ¤

Finally, we analyze the behavior of ρs,t on “edges” of Xm,n and on random pairs.
If A,A′ ∈ Xm,n, we write A ∼ A′ if ‖A − A′‖2

2 = 4
n (i.e. the hamming distance between A

and A′ is one).

Lemma 94 (Edges) If A,A′ ∈ Xm,n with A ∼ A′, then ρs,t(A,A′) ≤ 2st
mn .

Proof: Observe that

λt(A,A′) ≥ 1
m

m∑

i=1

|〈Ai, A
′
i〉|2t =

1
m

(
m− 1 +

(
1− 2

n

)2t
)
≥ 1− 4t

mn
.

hence ρs,t(A,A′) = 1− (1− 2t
mn)s ≤ 2st

mn . ¤

Lemma 95 (Random pairs) Suppose that A,B ∈ Xm,n are chosen independently and
uniformly at random. Then

Pr
[
λt(A,B) ≥ Ln−t

] ≤ 2me−
1
2
L1/t

.

In particular, for any s, t ∈ N, we have Pr[ρs,t(A,B) ≥ 1
4 ] ≥ Pr[λt(A,B) ≤ 1

2 ] ≥ 1
2 .

5.5.2 An equivalent negative-definite kernel

We now define, for any t ∈ N, two kernels. For A,B ∈ Xm,n, let

αt(A,B) =
1
m

m∑

i=1

m∑

j=1

|〈Ai, Bj〉|2t,

and
αt(A,B) =

αt(A,B)√
αt(A,A) αt(B,B)

.



CHAPTER 5. SPARSEST CUT ON QUOTIENTS OF THE HYPERCUBE 79

Lemma 96 For every t ∈ N, αt and αt are both positive semi-definite kernels on Xm,n.

Proof: Define maps f, f : Xm,n → Rnt
by f(A) = 1√

m

∑m
i=1 A⊗2t

i and f(A) =

f(A)/‖f(A)‖2. Then 〈f(A), f(B)〉 = αt(A, B) and 〈f(A), f(B)〉 = αt(A,B). Clearly f
is invariant under the Sm action on Xm,n. ¤

For every s, t ∈ N, define a negative-definite kernel on Xm,n by

Ks,t(A,B) = 1−
(

1
2

+
αt(A,B)

2

)s

.

For r ∈ N, let

Nr(η) =
{

A ∈ Xm,n : |〈Ai, Aj〉|2r ≤ η

m
∀i 6= j ∈ [m]

}

be the set of elements in Xm,n with small self-correlation. In particular, A ∈ Nr(η) implies
that αr(A,A) ≤ 1 + η. Using Cauchy-Schwarz, we have αr(A,B) ≤

√
αr(A,A) αr(B, B),

hence A, B ∈ Nr(η) implies αr(A,B) ≤ 1 + η as well.

Lemma 97 (Heavy matchings) Suppose that t ≥ 2r, η ≤ 1
16 , δ ∈ [0, 1], and A,B ∈

Nr(η). Then αt(A,B) ≥ 1− δ implies that

λt(A, B) ≥ 1− (10δ + 2η)

Proof: Define αi = 1−∑m
j=1 |〈Ai, Bj〉|2t and βi = maxj∈[m] |〈Ai, Bj〉|. Then,

1− αi ≤ β2t−2r
i

m∑

j=1

|〈Ai, Bj〉|2r ≤ β
2(t−r)
i

√
‖Ai‖2 · αr(B, B) ≤ β

2(t−r)
i (1 + η),

so we have

β2t
i ≥

(
1− αi

1 + η

) t
t−r

≥ 1− t

t− r
(αi + η) ≥ 1− 2(αi + η). (5.18)

Now suppose that

αt(A,B) =
1
m

m∑

i=1

(1− αi) ≥ 1− δ.

Let S = {i ∈ [m] : αi ≤ 1
8}. Clearly |S| ≥ (1− 8δ)m since

∑m
i=1 αi ≤ δm. Define

a mapping π : S → [m] by π(i) = argmaxj∈[m]|〈Ai, Bj〉|2t.

We claim that π is injective. Observe that for i ∈ S, (5.18) implies that β2t
i ≥

1− 2
(

1
8 + η

) ≥ 5
8 . So if π(i) = π(j) for i 6= j ∈ S, then we have

|〈Ai, Aj〉|2t ≥ |〈Ai, Bπ(i)〉|2t + |〈Aj , Bπ(i)〉|2t − 1 ≥ 1
4
,

which contradicts the fact that for A ∈ Nr(η), we have |〈Ai, Aj〉|2t ≤ |〈Ai, Aj〉|2r ≤ η
m ≤ 1

16 .
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Since π is injective, it follows that

λt(A,B) ≥ 1
m

∑

i∈S

β2t
i ≥ 1

m

∑

i∈S

(1− 2(αi + η)) ≥ |S|
m
− 2(δ + η) ≥ 1− (10δ + 2η).

¤
Even though Ks,t may not be a metric, we show that it is always close to ρs,t.

Theorem 98 (Bi-lipschitz equivalence) There exists a universal constant C ≥ 1 such
that for any t ≥ 2r, the distance functions Ks,t and ρs,t are C-bi-lipschitz equivalent when
restricted to Nr( 1

20mn).

Proof: If A = π(B) for some π ∈ Sm, then clearly λt(A,B) = αt(A,B) = 1, hence
ρs,t(A,B) = Ks,t(A,B) = 0. Let η = 1

20mn .
Consider A,B ∈ Nr(η) where A and B are in different equivalence classes of Xm,n.

Then clearly we have

λt(A,B) ≤ 1
m

(
m− 1 +

(
1− 2

n

)2t
)
≤ 1− 2

mn
. (5.19)

Now suppose that αt(A, B) = 1 − δ for some δ ∈ [0, 1]. In that case, αt(A,B) ≥
αt(A,B) ≥ 1 − δ, so Lemma 97 implies that λt(A,B) ≥ 1 − (10δ + 2η). From (5.19), we
conclude that δ ≥ 1

6mn . This, in turn, implies that η ≤ δ/3, which gives λt(A,B) ≥ 1−11δ.
Finally, we observe that

αt(A,B) ≥ (1− η)αt(A,B) ≥ (1− δ/3)αt(A,B) ≥ (1− δ/3)λt(A,B),

hence λt(A,B) ≤ (1− δ)(1+ δ/3) ≤ 1− 2δ
3 . We conclude that 1−λt(A, B) and 1−αt(A,B)

are within an O(1) factor of each other for all A,B ∈ Nr(η). This immediately implies that
Ks,t(A,B) and ρs,t(A,B) are within an O(1) multiplicative factor. ¤

The final result of this section concerns how large one needs to choose r (and hence
t) so that Nr( 1

20mn) contains most of the points of Xm,n.

Lemma 99 Let η = 1
20mn , and consider A ∈ Xm,n chosen uniformly at random. For any

τ = τ(m,n), there exists a choice of r ≈ log m
log n−log log m

τ
for which

Pr [A /∈ Nr(η)] ≤ τ.

Proof: Let Ai, Aj ∈ {−1√
n
, 1√

n
}n be chosen independently at random, then

Pr [A /∈ Nr(η)] ≤ m2Pr

[
|〈Ai, Aj〉| ≥

(
1

20m2n

)1/2r
]
≤ 2m2 exp

( −n

2(20m2n)1/r

)
.

Simplifying yields the desired conclusion. ¤
The point is that we can choose any m = poly(n) and τ = 2−n0.1

, and we still only
need r = O(1).
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5.6 Discussion and future directions: PSD flows and triangle
inequalities

In this section, we discuss the question of whether SDPO(1)(G) ≈ SDP(G) for
every graph G, i.e. whether the weak triangle inequalities can always be converted to
strong triangle inequalities with only an O(1) loss. This is most nicely stated in the setting
of the SDP dual.

Let G = (V, E) be a finite, undirected graph, and for every pair u, v ∈ V , let Puv

be the set of all paths between u and v in G. Let P =
⋃

u,v∈V Puv. A flow in G is a mapping
F : P → R≥0. We define, for every vertex (u, v) ∈ E, the congestion on (u, v) as

CF (u, v) =
∑

p∈P:(u,v)∈p

F (p).

For any u, v ∈ V , let F [u, v] =
∑

p∈Puv
F (p) be the amount of flow sent between u and v.

The standard “maximum concurrent flow” problem is simply

mcf(G) = maximize
{

D : ∀u, v, F [u, v] ≥ D and ∀(u, v) ∈ E,CF (u, v) ≤ 1.
}

If we define the symmetric matrix

Au,v = F [u, v]−D + 1{(u,v)∈E} − CF (u, v),

then certainly every feasible flow of value D satisfies Au,v ≥ 0 for all u, v ∈ V . In fact, we
can combine the two types of flow constraints (demand/congestion) together, and get the
same thing:

Exercise: mcf(G) = max{D : Au,v ≥ 0∀u, v}
Now, the dual of the Sparsest Cut SDP is precisely the same thing, but with a

global constraint on A, instead of having a constraint per entry:

SDP(G) = max{D : L(A) º 0}.

Here, L(A) denotes the Laplacian of A, i.e.

L(A)i,j =

{∑
k 6=i Ai,k i = j

−Ai,j otherwise.

and we write L(A) º 0 to denote that L(A) is positive semi-definite.
Now, if we write, for some κ ≥ 1,

A(κ)
u,v = F [u, v]−D + κ · 1{(u,v)∈E} − CF (u, v),

then clearly
max{D : A(κ)

u,v ≥ 0∀u, v} ≥ max{D : Au,v ≥ 0∀u, v}
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because we have bumped up the edge capacities. On the other hand, given an A(κ)-feasible
flow of value D, we can always get an actual feasible flow with value D/κ by simply scaling
down the flow by factor 1/κ, i.e.

max{D : A(κ)
u,v ≥ 0∀u, v} = κ ·max{D : Au,v ≥ 0∀u, v}.

Question 100 Is the same kind of thing true for “PSD-flows”? In other words, are

max{D : L(A) º 0} and max{D : L(A(κ)) º 0}

related by a factor depending only on κ?

If this question has a positive answer, then it makes integrality gaps for the Sparsest
Cut SDP much easier to understand, because SDP duality shows that SDP(G) = max{D :
L(A) º 0} while SDPκ(G) = max{D : L(A(κ)) º 0}.

The answer to this question is affirmative if we can decouple the L(A) º 0
constraint into two constraints, i.e. let Xu,v = F [u, v] − D for u 6= v and let Yu,v =
1(u,v)∈E − CF (u, v).

Question 101 Can we relate (e.g. within constant factors) max{D : L(A) º 0} to
max{D : L(X) º 0 and L(Y ) º 0} as we can for normal flows? It is easy to check
that this would give an affirmative answer to Question 100.
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